Cancer cells frequently display fundamentally altered cellular metabolism, which provides the biochemical foundation and directly contributes to tumorigenicity and malignancy. Rewiring of metabolic programmes, such as aerobic glycolysis and increased glutamine metabolism, are crucial for cancer cells to shed from a primary tumor, overcome the nutrient and energy deficit, and eventually survive and form metastases. However, the role of lipid metabolism that confers the aggressive properties of malignant cancers remains obscure. The present review is focused on key enzymes in lipid metabolism associated with metastatic disease pathogenesis. We also address the function of an important membrane structure-lipid raft in mediating tumor aggressive progression. We enumerate and integrate these recent findings into our current understanding of lipid metabolic reprogramming in cancer metastasis accompanied by new and exciting therapeutic implications.
BackgroundMicroRNAs (miRNAs), endogenous small non-coding RNAs, are stably detected in human plasma. Early diagnosis of gastric cancer (GC) is very important to improve the therapy effect and prolong the survival of patients. We aimed to identify whether four miRNAs (miR-223, miR-21, miR-218 and miR-25) closely associated with the tumorigenesis or metastasis of GC can serve as novel potential biomarkers for GC detection.MethodologyWe initially measured the plasma levels of the four miRNAs in 10 GC patients and 10 healthy control subjects by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and then compared plasma miRNA results with the expressions in cancer tissues from eight GC patients. Finally, the presence of miR-223, miR-21 and miR-218 in the plasma was validated in 60 GC patients and 60 healthy control subjects, and the areas under the receiver operating characteristic (ROC) curves of these miRNAs were analyzed.ResultsWe found that the plasma levels of miR-223 (P<0.001) and miR-21 (P<0.001) were significantly higher in GC patients than in healthy controls, while miR-218 (P<0.001) was significantly lower. The ROC analyses yielded the AUC values of 0.9089 for miR-223, 0.7944 for miR-21 and 0.7432 for miR-218, and combined ROC analysis revealed the highest AUC value of 0.9531 in discriminating GC patients from healthy controls. Moreover, the plasma levels of miR-223 (P<0.001) and miR-21 (P = 0.003) were significantly higher in GC patients with stage I than in healthy controls. Furthermore, the plasma levels of miR-223 were significantly higher in GC patients with helicobacter pylori (Hp) infection than those without (P = 0.014), and significantly higher in healthy control subjects with Hp infection than those without (P = 0.016).ConclusionsPlasma miR-223, miR-21 and miR-218 are novel potential biomarkers for GC detection.
PGC1a is a transcription factor coactivator that influences a majority of cellular metabolic pathways.
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.