During aging, muscle mass decreases, leading to sarcopenia, associated with low-level chronic inflammation (inflammaging), which induces sarcopenia by promoting proteolysis of muscle fibers and inhibiting their regeneration. Patients with a variety of pathologic conditions associated with sarcopenia, including rheumatoid arthritis (RA), have systemically elevated TNFα serum levels, and transgenic mice with TNFα overexpression (TNF-Tg mice, a model of RA) develop sarcopenia between adolescence and adulthood before they age. However, if and how TNFα contributes to the pathogenesis of sarcopenia during the normal aging process and in RA remains largely unknown. We report that TNFα levels are increased in skeletal muscles of aged WT mice, associated with muscle atrophy and decreased numbers of satellite cells and Type IIA myofibers, a phenotype that we also observed in adult TNF-Tg mice. Aged WT mice also have increased numbers of myeloid lineage cells in their skeletal muscles, including macrophages and granulocytes. These cells have increased TNFα expression, which impairs myogenic cell differentiation. Expression levels of TNF receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, which mediates signaling by some TNF receptor (TNFR) family members, are elevated in skeletal muscles of both aged WT mice and adult TNF-Tg mice. TRAF6 binds to TNFR2 in C2C12 myoblasts and mediates TNFα-induced muscle atrophy through NF-κB-induced transcription of the muscle-specific E3 ligases, Atrogen1 and Murf1, which promote myosin heavy-chain degradation. Haplo-deficiency of TRAF6 prevents muscle atrophy and the decrease in numbers of satellite cells, Type IIA myofibers, and myogenic regeneration in TRAF6 +/− ;TNF-Tg mice. Our findings suggest that pharmacologic inhibition of TRAF6 signaling in skeletal muscles during aging could treat/prevent age-and RA-related sarcopenia by preventing TNFα-induced proteolysis and inhibition of muscle fiber regeneration.
The risk of osteoporosis is increased in rheumatoid arthritis (RA). Anti-tumor necrosis factor (TNF) therapy has markedly improved the outcomes of RA patients but does not improve osteoporosis in some reports. This could be a combined result of disease severity and other therapeutic agents, such as glucocorticoids that accelerate osteoporosis progression. We evaluated the effects of anti-TNF therapy on osteoporosis in an animal model of RA and explored the possible mechanisms involved. Six-week-old TNF transgenic (TNF-Tg) mice with early stage erosive arthritis were treated with TNF antibody (Ab) or control immunoglobulin (IgG) weekly for 4 weeks. We found that TNF Ab completely blocked the development of erosive arthritis in TNF-Tg mice, but only slightly increased vertebral bone mass, associated with reduction in parameters of both bone resorption and formation. Similarly, TNF Ab slightly increased trabecular bone mass in tibias of 8-month-old TNF-Tg mice with advanced erosive arthritis. Interestingly, TNFα increased osteoblast differentiation from mouse bone marrow stromal cells (BMSCs) containing large number of macrophages but not from pure mesenchymal progenitor cells (MPCs). TNFα-polarized macrophages (TPMs) did not express iNos and Arginase 1, typical markers of inflammatory and resident macrophages. Interestingly, TPMs stimulated osteoblast differentiation, unlike resident and inflammatory macrophages polarized by IL-4 and interferon-λ, respectively. RNA-seq analysis indicated that TPMs produced several anabolic factors, including Jagged1 and insulin like 6 (INSL6). Importantly, inhibition of either Jagged1 or INSL6 blocked TNFα-induced osteoblast differentiation. Furthermore, INSL6 Ab significantly decreased the expansion of TNF-induced MPCs in BMSCs, and anti-TNF Ab reduced INSL6 expression by macrophages in vitro and in TNF-Tg mice in vivo. We conclude that TPMs produce INSL6 to stimulate bone formation and anti-TNF Ab blocks not only enhanced bone resorption but also the anabolic effect of TPMs on bone, limiting its effect to increase bone mass in this model of RA.
TGFβ1 induces age-related bone loss by promoting degradation of TNF receptor-associated factor 3 (TRAF3), levels of which decrease in murine and human bone during aging. We report that a subset of neutrophils (TGFβ1+CCR5+) is the major source of TGFβ1 in murine bone. Their numbers are increased in bone marrow (BM) of aged wild-type mice and adult mice with TRAF3 conditionally deleted in mesenchymal progenitor cells (MPCs), associated with increased expression in BM of the chemokine, CCL5, suggesting that TRAF3 in MPCs limits TGFβ1+CCR5+ neutrophil numbers in BM of young mice. During aging, TGFβ1-induced TRAF3 degradation in MPCs promotes NF-κB-mediated expression of CCL5 by MPCs, associated with higher TGFβ1+CCR5+ neutrophil numbers in BM where they induce bone loss. TGFβ1+CCR5+ neutrophils decreased bone mass in male mice. The FDA-approved CCR5 antagonist, maraviroc, reduced TGFβ1+CCR5+ neutrophil numbers in BM and increased bone mass in aged mice. 15-mon-old mice with TGFβRII specifically deleted in MPCs had lower numbers of TGFβ1+CCR5+ neutrophils in BM and higher bone volume than wild-type littermates. We propose that pharmacologic reduction of TGFβ1+CCR5+ neutrophil numbers in BM could treat or prevent age-related osteoporosis.
Alkylating agents (AAs) that are commonly used for cancer therapy cause great damage to the ovary. Pyrroloquinoline-quinine (PQQ), which was initially identified as a redox cofactor for bacterial dehydrogenases, has been demonstrated to benefit the fertility of females. The aim of this study was to investigate whether PQQ dietary supplementation plays a protective role against alkylating agent-induced ovarian dysfunction. A single dose of busulphan (20 mg/kg) and cyclophosphamide (CTX, 120 mg/kg) were used to establish a mouse model of ovarian dysfunction. Feed containing PQQNa2 (5 mg/kg) was provided starting 1 week before the establishment of the mouse model until the date of sacrifice. One month later, estrous cycle period of mice were examined and recorded for consecutive 30 days. Three months later, some mice were mated with fertile male mice for fertility test. The remaining mice were sacrificed to collect serum samples and ovaries. One day before sacrifice, some mice received a single injection of BrdU to label proliferating cells. Serum samples were used for test hormonal levels. Ovaries were weighted and used to detect follicle counts, cell proliferation, cell apoptosis and cell senescence. In addition, the levels of inflammation, oxidative damage and Pgc1α expression were detected in ovaries. Results showed that PQQ treatment increased the ovarian weight and size, partially normalized the disrupted estrous cycle period and prevented the loss of follicles of mice treated with AAs. More importantly, we found that PQQ treatment significantly increased the pregnancy rate and litter size per delivery of mice treated with AAs. The protective effects of PQQ appeared to be directly mediated by promoting cell proliferation of granulosa, and inhibiting cell apoptosis of granulosa and cell senescence of ovarian stromal cells. The underlying mechanisms may attribute to the anti-oxidative stress, anti-inflammation and pro-mitochondria biogenesis effects of PQQ.Our study highlights the therapeutic potential of PQQ against ovarian dysfunction caused by alkylating agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.