The recent outbreak of COVID-19 has been rapidly spreading on a global scale. To date, there is no specific vaccine against the causative virus, SARS-CoV-2, nor is there an effective medicine for treating COVID-19, thus raising concerns with respect to the effect of risk factors such as clinical course and pathophysiological parameters on disease severity and outcome in patients with COVID-19. By extracting and analyzing all available published clinical data, we identified several major clinical characteristics associated with increased disease severity and mortality among patients with COVID-19. Specifically, preexisting chronic conditions such as hypertension, cardiovascular disease, chronic kidney disease, and diabetes are strongly associated with an increased risk of developing severe COVID-19; surprisingly, however, we found no correlation between chronic liver disease and increased disease severity. In addition, we found that both acute cardiac injury and acute kidney injury are highly correlated with an increased risk of COVID-19-related mortality. Given the high risk of comorbidity and the high mortality rate associated with tissue damage, organ function should be monitored closely in patients diagnosed with COVID-19, and this approach should be included when establishing new guidelines for managing these high-risk patients. Moreover, additional clinical data are needed in order to determine whether a supportive therapy can help mitigate the development of severe, potentially fatal complications, and further studies are needed to identify the pathophysiology and the mechanism underlying this novel coronavirus-associated infectious disease. Taken together, these findings provide new insights regarding clinical strategies for improving the management and outcome of patients with COVID-19.
The complex drug delivery barrier in the eye reduces the bioavailability of many drugs, resulting in poor therapeutic effects. It is necessary to investigate new drugs through appropriate delivery routes and vehicles. Nanotechnology has utilized various nano-carriers to develop potential ocular drug delivery techniques that interact with the ocular mucosa, prolong the retention time of drugs in the eye, and increase permeability. Additionally, nano-carriers such as liposomes, nanoparticles, nano-suspensions, nano-micelles, and nano-emulsions have grown in popularity as an effective theranostic application to combat different microbial superbugs. In this review, we summarize the nano-carrier based drug delivery system developments over the last decade, particularly review the biology, methodology, approaches, and clinical applications of nano-carrier based drug delivery system in the field of ocular therapeutics. Furthermore, this review addresses upcoming challenges, and provides an outlook on potential future trends of nano-carrier-based drug delivery approaches in ophthalmology, and hopes to eventually provide successful applications for treating ocular diseases.
The design and development of self-calibrating ratiometric luminescent sensors for the fast, accurate, and sensitive discrimination and determination of pollutants in wastewater is highly desirable for public and environmental health. Herein, a 3D porous Tb(III)-based metal−organic framework (MOF), {[Tb-(HL)(H 2 O) 2 ]•x(solv)} n (1), was facilely synthesized using a ureafunctionalized tetracarboxylate ligand, 5,5′-(((1,4-phenylenebis-(azanediyl))bis(carbonyl))bis(azanediyl))diisophthalic acid (H 4 L). The activated framework showed a good water stability in both aqueous solutions at a wide pH range of 2−14 and simulated antibiotic wastewaters. Interestingly, this Tb-MOF exhibited dual luminescence owing to the partial energy transfer from the antenna H 4 L to Tb 3+ . More importantly, activated 1 (1a) that was dispersed in water showed a fast, accurate, and highly sensitive discrimination ability toward antibiotics with a good recyclability, discriminating three different classes of antibiotics from each other via the quenching or enhancement of the luminescence and tuning the emission intensity ratio between the H 4 L ligand and the Tb 3+ center for the first time. Simultaneously, 1a is a ratiometric luminescent sensor for the rapid, accurate, and quantitative discrimination of D 2 O from H 2 O. Furthermore, this complex was successfully used for the effective determination of antibiotics and D 2 O in real water samples. This work indicates that 1a represents the first ever MOF material for the discriminative sensing of antibiotics and D 2 O in H 2 O and promotes the practical application of Ln-MOF-based ratiometric luminescent sensors in monitoring water quality and avoiding any major leak situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.