Attachment, deformation and detachment of N-cadherin expressing prostate and breast cancer cell lines in a functionalized microchannel under hydrodynamic loading have been studied. N-cadherin antibodies are immobilized on the microchannel surface to capture the target cancer cells, PC3N and MDA-MB-231-N, from a homogeneous cell suspension. Although difficult, a significant fraction of moving cells can be captured under a low flow rate. More than 90% of the target cells are captured after a certain incubation time under no flow condition. The mechanical response of a captured cancer cell to hydrodynamic flow field is investigated and, in particular, the effect of flow acceleration is examined. The observed cell deformation is dramatic under low acceleration, but is negligible under high acceleration. Consequently, the detachment of captured cells depends on both flow rate and flow acceleration. The flow rate required for cell detachment is a random variable that can be described by a log-normal distribution. Two flow acceleration limits have been identified for proper scaling of the flow rate required to detach captured cells. A time constant for the mechanical response of a captured cell, on the order of 1 min, has been identified for scaling the flow acceleration. Based on these acceleration limits and time constant, an exponential-like empirical model is proposed to predict the flow rate required for cell detachment as a function of flow acceleration.
A unique flow field pattern in a bio-functional microchannel is utilized to significantly enhance the performance of a microsystem developed for selectively isolating circulating tumor cells from cell suspensions. For high performance of such systems, disposal of maximum non-target species is just as important as retention of maximum target species; unfortunately, most studies ignore or fail to report this aspect. Therefore, sensitivity and specificity are introduced as quantitative criteria to evaluate the system performance enabling a direct comparison among systems employing different techniques. The newly proposed fluidic scheme combines a slow flow field, for maximum target-cell attachment, followed by a faster flow field, for maximum detachment of non-target cells. Suspensions of homogeneous or binary mixtures of circulating breast tumor cells, with varying relative concentrations, were driven through antibody-functionalized microchannels. Either EpCAM or cadherin-11 transmembrane receptors were targeted to selectively capture target cells from the suspensions. Cadherin-11-expressing MDA-MB-231 cancer cells were used as target cells, while BT-20 cells were used as non-target cells as they do not express cadherin-11. The attachment and detachment of these two cell lines are characterized, and a two-step attachment/detachment flow field pattern is implemented to enhance the system performance in capturing target cells from binary mixtures. While the system sensitivity remains high, above 0.95, the specificity increases from about 0.85 to 0.95 solely due to the second detachment step even for a 1 : 1000 relative concentration of the target cells.
Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.
The adhesion dynamics of circulating tumor cells in a bio-functionalized microchannel under hydrodynamic loading is explored experimentally and analyzed theoretically. EpCAM antibodies are immobilized on the microchannel surface to specifically capture EpCAM-expressing target breast cancer cells MDA-MB-231 from a homogeneous cell suspension in shear flow. In the cross-stream direction, gravity is the dominant physical mechanism resulting in continuous interaction between the EpCAM cell receptors and the immobilized surface anti-EpCAM ligands. Depending on the applied shear rate, three dynamic states have been characterized: firm adhesion, rolling adhesion and free rolling. The steady-state velocity under adhesion- and free-rolling conditions as well as the time-dependent velocity in firm adhesion has been characterized experimentally, based on video recordings of target cell motion in functionalized microchannels. A previously reported theoretical model, utilizing a linear spring to represent the specific receptor–ligand bonds, has been adopted to analyze adhesion dynamics including features such as the cell–surface binding force and separation gap. By fitting theoretical predictions to experimental measurements, a unified exponential decay function is proposed to describe the target cell velocity evolution during capture; the fitting parameters, velocity and time scales, depend on the particular cell–surface system.
Circularly permuted TRAIL (CPT), a recombinant mutant of human Apo2L/TRAIL, is a novel antitumor candidate for multiple myeloma (MM) and other hematologic malignancies. In this phase II study, the safety and efficacy of CPT plus thalidomide was investigated in thalidomide-resistant MM patients. A total of 43 patients were recruited into three CPT plus thalidomide cohorts based on CPT dosage in sequence: 5 mg/kg (n 5 11), 8 mg/kg (n 5 17), and 10 mg/kg (n 5 15). CPT was administered via intravenous infusion on days 1-5, and thalidomide was given orally at 100 mg once daily in each 21-day cycle. The overall response rate (ORR) of 41 efficacy-evaluable patients was 22.0% (2 complete response, 3 near complete response, and 4 partial response). No significant difference in the ORR was observed among the three dose cohorts; however, the ORR tended to be higher with the higher-dose regimen. Median progression-free survival and median duration of response were 6.6 months and 6.1 months, respectively. The most common treatment-related adverse events (TRAEs) were neutropenia (46.5%), leukopenia (41.9%), fever (37.2%), elevated AST (32.6%), and elevated ALT (20.9%). TRAEs of Grade 3-4 were mainly neutropenia (18.6%), anemia (9.3%), elevated AST (7.0%), and leukopenia (4.7%). No significant differences were found in the incidence and severity of TRAEs among the three cohorts. In conclusion, CPT plus thalidomide was well tolerated with no occurrence of dose-limiting toxicities and demonstrated promising antitumor activity in RRMM patients. CPT at 10 mg/kg for 5 days in combination with thalidomide and dexamethason will be studied in the next clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.