Adding a Battery Energy Storage System (BESS) in the vicinity of renewable energy sources is a feasible solution to overcome the inherent negative impact caused by their random power fluctuating problems. Power conversion system performs as an interface between the battery packs and grid. The control method of power conversion system is essential to BESS. Finite Control Set Model Predictive Control (FCS‐MPC) is favorable to be chosen as the core control method for grid‐injected current regulation in such a system due to its outstanding benefactions, including fast dynamics, multiobjective optimization and simple implementations. Hence, this paper presents a FCS‐MPC with active damping feature for an Inductor(L) Capacitor(C) Inductor(L) (LCL)‐filter‐based power conversion system first. However, it is also well known that the practical effect of model predictive control significantly relies on the accuracy of mathematical model embedded within the controller. Parametric mismatch of the model tends to generate a prediction error, leading to a deterioration of the power quality of power conversion system or even instability issues furthermore. Therefore, this paper proposes an additional model correction strategy based on a comprehensive on‐line analysis on the difference between predictive and real value of respective voltage or current signals during the ever‐lasting several grid cycles to eliminate the influence of parametric mismatch. Simulation of an LCL‐filter‐based power conversion system is carried out to verify the validity of the theoretical analysis and control method in this paper. Finally, experimental results obtained from a down‐scaled prototype are provided to confirm the feasibility of the overall control strategy. © 2020 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Due to the development and deployment of renewable DC power sources and their inherent advantages for DC loads in applications, the DC nano-grid has attracted more and more research attentions; especially the topologies of AC/DC converters are increasingly studied. When designing an AC to DC converter for a DC nano-grid system, the grounding configuration, which determines the costs, the efficiency as well as the safety, plays an important role. A three-terminal output AC to DC converter based on united grounding configuration has been presented for DC nano-grid. However, it has to be pointed out that the three-terminal output DC nano-grid is not as popular as the two-terminal DC output one, due to the infrastructure consideration. This paper proposes a new Buck-Boost AC to DC converter with two-terminal output voltage for DC nano-grid. The operating principle, the steady-state analysis, and the small signal modelling for the proposed converter working in continuous conduction mode are presented in detail. A 220 V/50 Hz/800 W prototype was fabricated to verify the effectiveness of the proposed converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.