Using nanomaterials to develop multimodal systems has generated cutting-edge biomedical functions. Herein, we develop a simple chemical-vapor-deposition method to fabricate graphene-isolated-Au-nanocrystal (GIAN) nanostructures. A thin layer of graphene is precisely deposited on the surfaces of gold nanocrystals to enable unique capabilities. First, as surface-enhanced-Raman-scattering substrates, GIANs quench background fluorescence and reduce photocarbonization or photobleaching of analytes. Second, GIANs can be used for multimodal cell imaging by both Raman scattering and near-infrared (NIR) two-photon luminescence. Third, GIANs provide a platform for loading anticancer drugs such as doxorubicin (DOX) for therapy. Finally, their NIR absorption properties give GIANs photothermal therapeutic capability in combination with chemotherapy. Controlled release of DOX molecules from GIANs is achieved through NIR heating, significantly reducing the possibility of side effects in chemotherapy. The GIANs have high surface areas and stable thin shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.