To solve the problems of the damage of weed in paddy field on crop yield and quality, the impact of chemical herbicides on the ecological environment, and the soil pollution caused by plastic film mulching, the field-positioning test was carried out in 2015 to 2017. Taking Daohuaxiang 2 as the test material, three treatments (plant fiber-based degradable film, plastic film, and CK) were setup to investigate the effects of plant fiber-based degradable film on the weed inhibition, warming effect under mulching cultivation, rice yield, rice quality, and economic benefit. The results showed that compared with CK, the plant fiber-based degradable film and plastic film reduced the weed by 85.5% to 87.7% and 78.7% to 81.7%, respectively. Plant fiber-based degradable film mulching cultivation can increase the soil temperature of soil layer 0 to 0.1 m depth. In 2015 to 2017, rice yield with plant fiber-based degradable film increased by 8.71%, 7.53%, and 9.02%, respectively. Plant fiber-based degradable film can significantly reduce the hardness, increase its adhesion, and improve the eating quality of rice. Different films mulching had a certain impact on crop economic benefit. During the developmental stage of the panicle, the plant fiber-based degradable film began to crack, and by the blossom fruit period, the degradation rate reached the grade of 3 or 4. Therefore, the use of plant fiber-based degradable film instead of plastic film can reduce the amount of weed under the membrane and create a more suitable soil temperature, which was conducive to rice yield and quality.
The micro–nano-structured FePO4·2H2O was prepared from mixed solution of FeSO4 oxidized in diluted H3PO4 with H2O2 and NaOH solution in the turbulent flow cycle state at 90 °C. The resulting products were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Constant current charge/discharge tests were adopted to investigate the electrochemical performance and the rate capability (from 0.1C to 5C) of the carbon-coated LiFePO4 composite materials prepared from the micro–nano-structured FePO4. The carbon-coated LiFePO4 composite materials deliver a high specific discharge capacity of 153.7 mAh·g–1, exhibit excellent cycle performance with 98.6% of the capacity retained after 30 cycles. This study demonstrates that the turbulent flow cycle method may be an economical and effective method for industrial production of fine and uniform micro–nano-structured FePO4·2H2O particles for LiFePO4 cathode materials for Li-ion batteries.
Biodegradable mulching film (BMF) is a promising alternative to petroleum-based plastic mulching film. Thermal conductivity is an important quality factor of BMF that affects the heat transfer between ambient to soil and plant growth. The objective of this research was to enhance the thermal conductivity of fiber film through an environmentally friendly agent and optimized processing conditions. Response surface methodology (RSM) was used to optimize the processing conditions. With optimized process conditions of 70 g/m2 basis weight, 1.5% wet strength agent content, 0.5% neutral sizing agent content, 15% charcoal addition ratio, and 55 °SR beating degree, the films showed satisfactory thermal conductivity (0.0714 W/m·K) and high dry and wet tensile strengths (33.4 and 12.2 N). The addition of charcoal increased the thermal conductivity of the film by 34.31%. This promising result shows the biodegradable fiber film is able to increase soil temperature and meet the required temperature for crop growth.
The present work addresses the optimization of temperature-increasing, environmentally friendly biodegradable film with titanium dioxide and rice straw fiber using response surface methodology (RSM) analysis. The effects of the various process parameters (basis weight, neutral sizing agent, addition ratio of titanium dioxide, wet strength agent, and beating degree) on the dry tensile strength, wet tensile strength, and light-scattering coefficient of the fiber film are reported. The optimal technical parameters of the temperature-increasing film made from titanium dioxide and rice straw fiber included a 64 to 68 g/m2 basis weight, 1.55% to 1.60% wet strength agent, 0.9% neutral sizing agent, 18% addition ratio of titanium dioxide, and 35°SR beating degree. Under this condition, the dry tensile strength, wet tensile strength, and light-scattering coefficient were higher than 30 N, 10 N, and 45 m2/kg, respectively. The film was characterized using Fourier transform infrared (FTIR) spectroscopy. In addition, the resulting film met the requirements of mechanical properties for field mulching and agronomic requirements for crop growth. The results provided a reference for the preparation of fiber film suitable for the temperature required for crop growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.