The aim of this work was to improve the forecasting performance of business failure prediction with all sample sizes by constructing a novel nonlinear integrated forecasting model (ANIFM) of individual linear forecasting models and individual nonlinear forecasting models. First, a new variable set including internal variables and external variables was proposed. Using scatter diagrams, all variables were placed in either the linear group or the nonlinear group. We considered logistic regression (LR) as the individual linear forecasting method to deal with each linear variable, the support vector machine (SVM) as the individual nonlinear forecasting method to deal with each nonlinear variable, and the residual SVM as the integration method to integrate the forecasts of LRs and SVMs. The proposed procedure was applied to real datasets from China. For performance comparison, single LR, SVM methods, integration forecasting models based on equal weights and on neural networks, and one based on rough set and Dempster-Shafer evidence theory (D-S theory) were also included in the empirical experiment as benchmarks. The experimental results demonstrate the superior forecasting performance of the proposed ANIFM in terms of forecasting accuracy and forecasting stability, especially with small sample sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.