The oxygen-containing functional groups (OCFG) on the coal surface affect the adsorption effect of hydrocarbon oily collectors (HOC). An investigation of the interaction between the HOC and OCFG in the absence and presence of water is conducive to understanding the effect of OCFG type on the adsorption of HOC on the coal surface. In this paper, FTIR analysis was used to analyze the OCFG type of coal surface. The adsorption behavior of HOC on different OCFG surfaces was investigated using molecular dynamics simulation. The results indicated the presence of OCFG such as -OH, -COOH, -C=O, and -COCH3 on the coal surface. In conditions without water, the effect of OCFG on HOC adsorption capability follows the order -COOH > -C=O > -OH > -COCH3. In an aqueous solution, the effect of OCFG on HOC adsorption capability follows the order -C=O>-COCH3>-OH>-COOH. Moreover, the hydrophilicity of OCFG is the key factor that affects the adsorption effect of HOC. In other words, the adsorption effect of HOC on the coal surface in an aqueous solution does not depend on the strength of the interaction between the OCFG and HOC in the absence of water, but on the hydrophilicity of the OCFG. The -COOH and -OH on the coal surface are not conducive to the adsorption of HOC onto the coal surface. Masking the -COOH and -OH of the coal surface is beneficial in improving the coal flotation performance with HOC as a collector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.