Subjective well-being is a comprehensive psychological indicator for measuring quality of life. Studies have found that emotional measurement methods and measurement accuracy are important for well-being-related research. Academic emotion is an emotion description in the field of education. The subjective well-being of learners in an online learning environment can be studied by analyzing academic emotions. However, in a large-scale online learning environment, it is extremely challenging to classify learners’ academic emotions quickly and accurately for specific comment aspects. This study used literature analysis and data pre-analysis to build a dimensional classification system of academic emotion aspects for students’ comments in an online learning environment, as well as to develop an aspect-oriented academic emotion automatic recognition method, including an aspect-oriented convolutional neural network (A-CNN) and an academic emotion classification algorithm based on the long short-term memory with attention mechanism (LSTM-ATT) and the attention mechanism. The experiments showed that this model can provide quick and effective identification. The A-CNN model accuracy on the test set was 89%, and the LSTM-ATT model accuracy on the test set was 71%. This research provides a new method for the measurement of large-scale online academic emotions, as well as support for research related to students’ well-being in online learning environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.