A sensitive biosensor: A strategy for the intracellular imaging of Cu(2+) ions has been developed by integrating a recognition molecule, N-(2-aminoethyl)-N,N,N'tris(pyridin-2-ylmethyl)ethane-1,2-diamine (AE-TPEA), into a hybrid system composed of carbon and CdSe/ZnS quantum dots.
Ein empfindlicher Sensor: Eine Methode zur Bildgebung von Kupfer(II)‐Ionen wurde entwickelt. Diese Methode beruht auf der molekularen Erkennung der Kupfer(II)‐Ionen durch N‐(2‐Aminoethyl)‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethan‐1,2‐diamin (AE‐TPEA), das in ein Hybridsystem aus Kohlenstoff und CdSe/ZnS‐Quantenpunkten integriert wurde.
An efficient strategy for selective fluorescent detection of Cu(2+) was developed based on the carbon quantum dots (CQDs) nanoconjugated with a specific organic molecule, amino TPEA, and further applied to intracellular sensing and imaging of Cu(2+) as a consequence of the fluorescence properties and the established low cytotoxicity of CQDs.
Direct determination of cerebral metal ions in small volume biological samples is still the bottleneck for evaluating the roles that metal ions play in the physiological and pathological processes. In this work, selected copper ion (Cu(2+)) as a model, a facile and direct electrochemical method for detection of Cu(2+) has been developed on the basis of two new designed strategies: one is specific recognition molecule for Cu(2+)-AE-TPEA (N-(2-aminoethyl)-N,N',N'-tris(pyridine-2-yl-methyl)ethane-1,2-diamine); another is carbon dots (C-Dots) with high electrocatalytic activity. Based on the high affinity between TPEA and Cu(2+), the electrode assembled with C-Dot-TPEA hybridized nanocomposites shows high selectivity toward Cu(2+) over other metal ions, amino acids, and biological coexisting species, such as uric acid (UA), ascorbic acid (AA), and so on, which makes it possible to be used for determination of Cu(2+) in the complex brain system. By taking advantage of C-Dots, a dynamic linear range from 1 μM to 60 μM is first achieved with a detection limit of ∼100 nM in aCSF solution. In addition, the developed method with theoretical simplicity and less instrumental demands exhibits long-term stability and good reproducibility. As a result, the present strategy has been successfully applied in detection of cerebral Cu(2+) in normal rat brain and that followed by global cerebral ischemia, combined with in vivo microdialysis. The determined concentrations of Cu(2+) in the rat brain microdialysates by the present method are found to be identical to those obtained by the conventional ICP-AES method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.