Hardware-friendly network quantization (e.g., binary/uniform quantization) can efficiently accelerate the inference and meanwhile reduce memory consumption of the deep neural networks, which is crucial for model deployment on resource-limited devices like mobile phones. However, due to the discreteness of low-bit quantization, existing quantization methods often face the unstable training process and severe performance degradation. To address this problem, in this paper we propose Differentiable Soft Quantization (DSQ) to bridge the gap between the full-precision and low-bit networks. DSQ can automatically evolve during training to gradually approximate the standard quantization. Owing to its differentiable property, DSQ can help pursue the accurate gradients in backward propagation, and reduce the quantization loss in forward process with an appropriate clipping range. Extensive experiments over several popular network structures show that training lowbit neural networks with DSQ can consistently outperform state-of-the-art quantization methods. Besides, our first efficient implementation for deploying 2 to 4-bit DSQ on devices with ARM architecture achieves up to 1.7× speed up, compared with the open-source 8-bit high-performance inference framework NCNN [31].
Model binarization is an effective method of compressing neural networks and accelerating their inference process, which enables state-of-the-art models to run on resource-limited devices. Recently, advanced binarization methods have been greatly improved by minimizing the quantization error directly in the forward process. However, a significant performance gap still exists between the 1-bit model and the 32-bit one. The empirical study shows that binarization causes a great loss of information in the forward and backward propagation which harms the performance of binary neural networks (BNNs), and the limited information representation ability of binarized parameter is one of the bottlenecks of BNN performance. We present a novel Distributionsensitive Information Retention Network (DIR-Net) to retain the information of the forward activations and backward gradients, which improves BNNs
Free-hand sketch-based image retrieval (SBIR) is a specific cross-view retrieval task, in which queries are abstract and ambiguous sketches while the retrieval database is formed with natural images. Work in this area mainly focuses on extracting representative and shared features for sketches and natural images. However, these can neither cope well with the geometric distortion between sketches and images nor be feasible for large-scale SBIR due to the heavy continuous-valued distance computation. In this paper, we speed up SBIR by introducing a novel binary coding method, named Deep Sketch Hashing (DSH), where a semi-heterogeneous deep architecture is proposed and incorporated into an end-to-end binary coding framework. Specifically, three convolutional neural networks are utilized to encode free-hand sketches, natural images and, especially, the auxiliary sketch-tokens which are adopted as bridges to mitigate the sketch-image geometric distortion. The learned DSH codes can effectively capture the crossview similarities as well as the intrinsic semantic correlations between different categories. To the best of our knowledge, DSH is the first hashing work specifically designed for category-level SBIR with an end-to-end deep architecture. The proposed DSH is comprehensively evaluated on two large-scale datasets of TU-Berlin Extension and Sketchy, and the experiments consistently show DSH's superior SBIR accuracies over several state-of-the-art methods, while achieving significantly reduced retrieval time and memory footprint.
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices.However, the binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.To address these issues, a variety of algorithms have been proposed, and achieved satisfying progress in recent years. In this paper, we present a comprehensive survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error. We also investigate other practical aspects of binary neural networks such as the hardware-friendly design and the training tricks. Then, we give the evaluation and discussions on different tasks, including image classification, object detection and semantic segmentation. Finally, the challenges that may be faced in future research are prospected.the heavy computation and storage still inevitably limit the applications of the deep CNNs in practice. Besides, due to the huge model parameter space, the prediction of the neural networks is usually viewed as a black-box, which brings great challenges to the interpretability of CNNs. Some works like [21,22,23] empirically explore the function of each layer in the network. They visualize the feature maps extracted by different filters and view each filter as a visual unit focusing on different visual components.of the ResNet-50 [28], and meanwhile save more than 75% of parameters and 50% computational time. In the literature, approaches for compressing the deep networks can be classified into five categories: parameter pruning [26,29,30,31], parameter quantizing [32,33,34,35,36,37,38,39,40,41], low-rank parameter factorization [42,43,44,45,46], transferred/compact convolutional filters [47,48,49,50], and knowledge distillation [51,52,53,54,55,56]. The parameter pruning and quantizing mainly focus on eliminating the redundancy in the model parameters respectively by removing the redundant/uncritical ones or compressing the parameter space (e.g. , from the floating-point weights to the integer ones). Low-rank factorization applies the matrix/tensor decomposition techniques to estimate the informative parameters using the proxy ones of small size. The compact convolutional filter based approaches rely on the carefullydesigned structural convolutional filters to reduce the storage and computation complexity. The knowledge distillation methods try to distill a more compact model to reproduce the output of a larger network.Among the existing network compression techniques, quantization based one serves as a promising and fast solution that yields highly compact models compared to their floating-point counterparts, by representing the network weights with very low precision. Along this direction, the most extreme quantization is binarization, the interest...
Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance. In this paper, we propose a tripletbased deep hashing (TDH) network for cross-modal retrieval. First, we utilize the triplet labels, which describes the relative relationships among three instances as supervision in order to capture more general semantic correlations between cross-modal instances. We then establish a loss function from the inter-modal view and the intra-modal view to boost the discriminative abilities of the hash codes. Finally, graph regularization is introduced into our proposed TDH method to preserve the original semantic similarity between hash codes in Hamming space. Experimental results show that our proposed method outperforms several state-of-the-art approaches on two popular cross-modal datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.