We propose a novel method for fabricating high-aspect-ratio micro-/nano-structures by dielectrophoresis-electrocapillary force (DEP-ECF)-driven UV-imprinting. The force of DEP-ECF, acting on an air–liquid interface and an air–liquid–solid three-phase contact line, is generated by applying voltage between an electrically conductive mold and a substrate, and tends to pull the dielectric liquid (a UV-curable pre-polymer) into the mold micro-cavities. The existence of DEP-ECF is explained theoretically and demonstrated experimentally by the electrically induced reduction of the contact angle. Furthermore, DEP-ECF is proven to play a critical role in forcing the polymer to fill into the mold cavities by the real-time observation of the dynamic filling process. Using the DEP-ECF-driven UV-imprinting process, high-aspect-ratio polymer micro-/nano-structures (more than 10:1) are fabricated with high consistency. This patterning method can overcome the drawbacks of the mechanically induced mold deformation and position shift in conventional imprinting lithography and maximize the pattern uniformity which is usually poor in capillary force lithography.
In this paper we present an economical process to create anisotropic microtextures based on periodic parallel stripes of monolayer silica nanoparticles (NPs) patterned by geometrically confined evaporative self-assembly (GCESA). In the GCESA process, a straight meniscus of a colloidal dispersion is initially formed in an opened enclosure, which is composed of two parallel plates bounded by a U-shaped spacer sidewall on three sides with an evaporating outlet on the fourth side. Lateral evaporation of the colloidal dispersion leads to periodic "stick-slip" receding of the meniscus (evaporative front), as triggered by the "coffee-ring" effect, promoting the assembly of silica NPs into periodic parallel stripes. The morphology of stripes can be well controlled by tailoring process variables such as substrate wettability, NP concentration, temperature, and gap height, etc. Furthermore, arrayed patterns of nanopillars or nanoholes are generated on a silicon wafer using the as-prepared colloidal stripes as an etching mask or template. Such arrayed patterns can reveal unique anisotropic wetting properties, which have a large contact angle hysteresis viewing from both the parallel and perpendicular directions in addition to a large wetting anisotropy.
Millimetre-scale plano-convex lenses with controllable focal lengths are presentedviairreversible electrowetting of UV-curable polymer droplets on a nanotextured dielectric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.