Recently, there has been a lot of attention on how to enhance the management capabilities of distributed electricity production and demand aggregation by Virtual Power Plants (VPPs), which poses the challenge of leveraging their ability to participate in electricity markets to maximize operating profits. This paper analyzes the scheduling problem in fully distributed controlled VPP and proposes a two-level game model. In this model, the Stackelberg game is used to describe the interaction between Distributed Energy Resources (DER) and Energy Management System (EMS). On the other hand, the competition between DERs is formulated by the Cournot game. EMS sets its electric rate as single-leader, and DERs generate the optimal generation capacity accordingly as multi-follower. Then, we analyze and obtain the relationship between the demand and the resource supply to achieve market equilibrium on maximizing the utility of EMS and DERs. Simulation results show the analysis’s correctness and the proposed strategies’ performance improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.