Safety-related issues have always been one of the most critical barriers hindering the large-scale popularization of high-energy-density storage systems. For lithium-sulfur (Li-S) batteries, conventional polyolefin separators with poor flash points...
Solid‐state lithium metal batteries (SSLMBs) are identified as a highly promising candidate for next‐generation energy storage devices, yet they still face uncontrollable dendritic lithium (Li) growth originating from interfacial incompatibility. To address this issue, an “integration plasma (IP)” strategy for interlayer construction is proposed that integrates metal reduction and vapor deposition functions, featuring the ability to give a manipulable and quantifiable chemical regulation for controlling the surface concentration (Csurface) and the atomic ratio of the introduced metal element and electronegative element (ARE/M) on solid‐state electrolyte (SSE). This IP‐formed interlayer can in situ react with Li anode to synchronously produce metal‐Li alloy, Li salt and amorphous carbon, thus offering an “integrated function” to promote a spherical and hexagonal Li growth, preventing the dendrite propagation from SSE. When Csurface of metal elements and corresponding ARE/M is regulated as ≈1.13 nmol cm‐2 and ≈2.6, the IP‐modified SSE prolongs the lifespan of SSLMBs with LiNi0.8Co0.1Mn0.1O2 cathode to over 1000 cycles with a low‐capacity attenuation of 0.03% per cycle, highlighting the multiply functions of IP to accelerate the practical application of SSLMBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.