This study investigated the effect of hollow 304 stainless-steel fiber on the corrosion resistance and mechanical properties of ultra-high-performance concrete (UHPC), and prepared copper-coated-fiber-reinforced UHPC as the control group. The electrochemical performance of the prepared UHPC was compared with the results of X-ray computed tomography (X-CT). The results reveal that cavitation can improve the distribution of steel fibers in the UHPC. Compared with solid steel fibers, the compressive strength of UHPC with hollow stainless-steel fibers did not exhibit significant change, but the maximum flexural strength increased by 45.2% (2 vol% content, length–diameter ratio of 60). Hollow stainless-steel fiber could better improve the durability of UHPC compared with copper-plated steel fiber, and the gap between the two continued to increase as the durability test progressed. After the dry–wet cycle test, the flexural strength of the copper-coated-fiber-reinforced UHPC was 26 MPa, marking a decrease of 21.9%, while the flexural strength of the UHPC mixed with hollow stainless-steel fibers was 40.1 MPa, marking a decrease of only 5.6%. When the salt spray test had run for seven days, the difference in the flexural strength between the two was 18.4%, but when the test ended (180 days), the difference increased to 34%. The electrochemical performance of the hollow stainless-steel fiber improved, owing to the small carrying capacity of the hollow structure, and more uniform distribution in the UHPC and lower interconnection probability were achieved. According to the AC impedance test results, the charge transfer impedance of the UHPC doped with solid steel fiber is 5.8 KΩ, while that of the UHPC doped with hollow stainless-steel fiber is 8.8 KΩ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.