The behavior of crack initiation and early growth in high-cycle fatigue (HCF) and very-high-cycle fatigue (VHCF) regimes for a TC4 titanium alloy with equiaxed microstructure was investigated. Fatigue tests were conducted via ultrasonic axial cycling (20 kHz) superimposed by an amount of tensile load. The effect of tensile mean stress on fatigue endurance was plotted with a Haigh diagram formulated by Goodman, Gerber and the present formula. Fractography was observed by scanning electron microscopy, and three failure types of crack initiation were classified: surface-without-RA (rough area), surface-with-RA and interior-with-RA. Profile samples from the crack initiation region were prepared and examined by transmission electron microscopy with selected area electron diffraction. The observations show that a nanograin layer prevails underneath the fracture surface in the RA region only for the VHCF case with a stress ratio R = −1. The nanograin formation mechanism was explained by the numerous cyclic pressing (NCP) model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.