Bactrocera tau (Walker) (Diptera: Tephritidae) is an economically important invasive pest, that is capable of seriously reducing the quality and yield of vegetables and fruits, it was first recorded from Fujian province in 1849 and later introduced to Yunnan province in 1912 as a result in trade fruits and vegetables of China. In recent years, with the onset of global climate change and the accompanying increase in the greenhouse effect, elevated climatic temperatures have become one of the main environmental factors affecting growth and reproduction in insects, and the optimal developmental temperature of B. tau was found to be from 25 °C to 31 °C, the growth, development and reproduction of B. tau are normal under the optimal temperature conditions. In order to determine the repercussions that elevated temperature have on B. tau, we assessed the effects that short-term (12 h) hightemperature exposures (34 °C, 36 °C, 38 °C, 40 °C, 42 °C, 44 °C, 46 °C, and 48 °C) had on the growth, development and reproduction of B. tau at different developmental stages of the fly. The results showed that the survival rate of B. tau gradually decreased in all stages following exposure to short-term hightemperatures. The pupal stage was the least sensitive to increased temperatures. The pupae withstood the highest lethal temperature, having an LT 50 of 42.060 °C, followed by female adults (40.447 °C), male adults (40.013 °C), and larvae (36.740 °C). The egg stage, which was the most susceptible to heat increases, had the lowest LT 50 (38.310 °C). No significant effects were observed in the developmental stages of B. tau at temperatures from 24 °C to 38 °C. The development duration was significantly prolonged at 40 °C (P < 0.05) in the eggs (2.830d), larvae (7.330d), and pupae (8.170d) (P < 0.05). B. tau was unable to survive at temperatures above 42 °C. The pre-oviposition of female adults was extended, the average egg number per female showed a downward trend, the longevity of adults gradually shortened, and the ratio of female to male offspring increased as temperature increments were increased. In summary, short-term high-temperatures over 42 °C were not suitable for successful development of B. tau, while short-term high-temperatures over 40 °C were not suitable for successful reproduction in B. tau. The fruit fly Bactrocera tau (Walker) (Diptera: Tephritidae) is a major economic pest on cucurbitaceous plants, tomatoes, and other fleshy fruits 1. B. tau was first recorded from China from Fujian province in 1849 by Walker 2. The species was subsequently discovered in Yunnan, Guangdong, and Sichuan provinces from 1912 to 1913 3-5 , and has since dispersed rapidly through much of southern China. From 2000 to 2004, B. tau has been reported from much of south Asia, southeastern Asia as well as the Solomon Islands 6-9. In these countries, the B. tau has severely reduced quality and yield of vegetables and fruits. The B. tau has caused 21-34% and 21-32% yield losses of Siraitia grosvenorii and Cucurbita moschata respectively in Taiwa...
The fruit flies Bactrocera tau (Walker) and B. cucurbitae (Coquillett) are economically important invasive pests on numerous vegetable and fruit species in China. Due to the instability of the early spring climate, temperatures often deviate far below the normal temperature for short periods of time. Such a sudden short-term low temperature may impact the reproduction and development of the two fruit fly species. In this study, the effects of low temperatures (8, 6, 4, 2, 0, −2, and −4°С) on the development and reproduction of these two closely related fruit fly species were studied under laboratory condition. The results showed that their survival rates decreased gradually with corresponding decreases in the tested temperatures. On the other hand, their pre-oviposition periods and their adult female to male sex ratios increased, while the average number of eggs per female of each species and longevity of male adult of B. cucurbitae initially increased and later decreased after exposure to the low-temperature treatments. Overall, low temperatures promoted reproduction in B. cucurbitae and B. tau at temperatures ranging from 24°С to as low as 8°С. Development and reproduction of the two species were negatively affected when temperatures were between 8 to −4°С. The cold resistance of each developmental stage was higher in B. tau than in corresponding stages of B. cucurbitae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.