Dielectric capacitors with ultrahigh power densities and fast charging/discharging rates are of vital relevance in advanced electronic markets. Nevertheless, a tradeoff always exists between breakdown strength and polarization, which are two essential elements determining the energy storage density. Herein, a novel trilayered architecture composite film, which combines outer layers of two-dimensional (2D) BNNS/poly(vinylidene fluoride-cohexafluoropropylene) (P(VDF-HFP)) with high breakdown strength and an intermediate layer made of blended 2D MoS 2 nanosheets/P(VDF-HFP) with large polarization, is fabricated using the layer-by-layer casting method. The insulating BNNS with a wide band gap is able to largely alleviate the distortion of the local electric field, thereby suppressing the leakage current and effectively reducing the conductivity loss, while the 2D MoS 2 nanosheets act as microcapacitors in the polymer composites, thus significantly increasing the permittivity. A finite element simulation is carried out to further analyze the evolution process of electrical treeing in the experimental breakdown of the polymer nanocomposites. Consequently, the nanocomposites possess an excellent discharged energy density of 25.03 J/cm 3 accompanied with a high charging/discharging efficiency of 77.4% at 650 MV/m, which greatly exceeds those of most conventional single-layer films. In addition, the corresponding composites exhibit an outstanding reliability of energy storage performance under continuous cycling. The excellent performances of these polymer-based nanocomposite films could pave a way for widespread applications in advanced capacitors.
A new generation of high-temperature dielectric materials toward capacitive energy storage is highly demanded as power electronics are always exposed to elevated temperatures in high-power applications. Polymer dielectric materials, an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.