As the terminal step in photosystem II, and a potential half-reaction for artificial photosynthesis, water oxidation (2H 2 O → O 2 þ 4e − þ 4H þ ) is key, but it imposes a significant mechanistic challenge with requirements for both 4e − ∕4H þ loss and O-O bond formation. Significant progress in water oxidation catalysis has been achieved recently by use of single-site Ru metal complex catalysts such as ½RuðMebimpyÞðbpyÞðOH 2 Þ 2þ [Mebimpy ¼ 2,6-bisð1-methylbenzimidazol-2-ylÞpyridine; bpy ¼ 2,2 0 -bipyridine]. When oxidized from Ru II -OH 2 2þ to Ru V ¼ O 3þ , these complexes undergo O-O bond formation by O-atom attack on a H 2 O molecule, which is often the rate-limiting step. Microscopic details of O-O bond formation have been explored by quantum mechanical/molecular mechanical (QM/MM) simulations the results of which provide detailed insight into mechanism and a strategy for enhancing catalytic rates. It utilizes added bases as proton acceptors and concerted atom-proton transfer (APT) with O-atom transfer to the O atom of a water molecule in concert with proton transfer to the base (B). Base catalyzed APT reactivity in water oxidation is observed both in solution and on the surfaces of oxide electrodes derivatized by attached phosphonated metal complex catalysts. These results have important implications for catalytic, electrocatalytic, and photoelectrocatalytic water oxidation.water split | O-O coupling | base effect | isotope effect I n natural photosynthesis, and in many schemes for artificial photosynthesis, water oxidation (is a key reaction with requirements for both 4e − ∕4H þ loss and O -O bond formation. Significant progress in water oxidation catalysis has been achieved recently by using single-site molecular catalysts (1-8). This includes elucidation of a mechanism in Ce (IV) catalyzed water oxidation by ½RuðtpyÞðbpmÞðOH 2 Þ 2þ and ½RuðtpyÞðbpzÞðOH 2 Þ 2þ (tpy ¼ 2; 2 0 ∶6 0 ; 2 00 -terpyridine; bpm ¼ 2; 2 0 -bipyrimidine; bpz ¼ 2; 2 0 -bipyrazine), Scheme 1 (1). Although undergoing multiple turnovers unchanged, these catalysts are relatively slow with O-O bond formation, often the rate-limiting step. In Scheme 1, O-atom transfer from ½Ru V ðtpyÞðbpmÞðOÞ 3þ to H 2 O is rate limiting and occurs with kð0.1 M HNO 3 ; 25°CÞ ¼ 8.9 × 10 −3 s −1 (5). To put rate into perspective, in a practical solar energy conversion scheme, a turnover rate on the millisecond or submillisecond time scale is required to match or exceed the rate of solar insolation. Achieving rates of this magnitude poses a considerable challenge (9).A useful strategy for achieving faster rates in metal complex catalysts exists based on an interplay between mechanism and systematic synthetic modifications. Ligand variations can be used to modify redox potentials, increase driving force, and decrease barriers (6). Mechanistic insight can uncover previously undescribed reaction pathways. We report here the use of a previously unidentified pathway to achieve greatly enhanced rates of electrocatalytic water oxidation for the catalyst, ½RuðMebim...
The astronomical number of accessible discrete chemical structures makes rational molecular design extremely challenging. We formulate the design of molecules with specific tailored properties as performing a continuous optimization in the space of electron-nuclear attraction potentials. The optimization is facilitated by using a linear combination of atomic potentials (LCAP), a general framework that creates a continuous property landscape from an otherwise unlinked set of discrete molecular-property values. A demonstration of this approach is given for the optimization of molecular electronic polarizability and hyperpolarizability. We show that the optimal structures can be determined without enumerating and separately evaluating the characteristics of the combinatorial number of possible structures, a process that would be much slower. The LCAP approach may be used with quantum or classical Hamiltonians, suggesting possible applications to drug design and new materials discovery.
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H(2)O)(6)(2+/3+) and Ru(H(2)O)(6)(2+/3+). The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.
We describe the new Pathways plugin for the molecular visualization program VMD. The plugin identifies and visualizes tunneling pathways and pathway families in biomolecules and calculates relative electronic couplings. The plugin includes unique features to estimate the importance of individual atoms for mediating the coupling, to analyze the coupling sensitivity to thermal motion, and to visualize pathway fluctuations. The Pathways plugin is open source software distributed under the terms of the GNU public license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.