Background Yaks have a strong adaptability to the plateau environment, which can be attributed to the effective oxygen utilization rate of their lung tissue. Elastic fibre confers an important adaptive structure to the alveolar tissues in yaks. However, little research has been focused on the structural development of lung tissues and the expression levels of elastic fibres in yaks after birth. Therefore, this study aimed to investigate the morphological changes of elastic fibers and expression profiles of fibre-formation genes in yak lungs at different growth stages and the relationship between these changes and plateau adaptation. Results Histological staining was employed to observe the morphological changes in the lung tissue structure of yaks at four different ages: 1 day old, 30 days old, 180 days old and adult. There was no significant difference in the area of a single alveolus between the 1-day-old and 30-day-old groups (P-value > 0.05). However, the single alveolar area was gradually increased with an increase in age (P-value < 0.05). Elastic fibre staining revealed that the amount of elastic fibres in alveolar tissue was increased significantly from the ages of 30 days to 180 days (P-value < 0.05) and stabilized during the adult stage. Transcriptome analysis indicated that the highest levels of differentially expressed genes were found between 30 days of age and 180 days of age. KEGG analysis showed that PI3K-Akt signalling pathway and MAPK pathway, which are involved in fibre formation, accounted for the largest proportion of differentially expressed genes between 30 days of age and 180 days of age. The expression levels of 36 genes related to elastic fibre formation and collagen fibre formation were also analysed, and most of these genes were highly expressed in 30-day-old and 180-day-old yaks. Conclusions The content of elastic fibres in the alveolar tissue of yaks increases significantly after birth, but this change occurs only from 30 days of age to 180 days of age. Our study indicates that elastic fibres can improve the efficiency of oxygen utilization in yaks under harsh environmental conditions.
The yak (Bos grunniens) is a species adapted to the hypoxic environment in the plateau area. The heart is a hypoxia-sensitive organ involved in this adaptation. Herein, we used single-cell RNA-seq technology and clustering to determine the presence of 11 cell populations in the yak heart. We analyzed gene expression differences and expression patterns in each cell subpopulation at different altitudes. The cells related to altitude changes are mainly smooth muscle cells and vascular endothelial cells. Of the four transcription factors (TFs, MEF2B, FOXP4, ARID5A, and HES4) found in smooth muscle cells, only MEF2B was specifically expressed in vascular smooth muscle cells. Three key TFs (HNF1B, DMRTA1, and ARNTL2) were also found in the cardiomyocyte module. Compared with data extracted from low-altitude yak, we observed that the high altitude yak has enhanced contraction and relaxation of vascular smooth muscle cells and an increased metabolic level of cardiomyocytes. These may be strategies for the yak to adapt to high-altitude hypoxia environments.
BackgroundYaks have a strong adaptability to the plateau environment, which is closely associated with the effective oxygen utilization rate of their lung tissue. The elastic fibre is an important adaptive structure of alveolar tissue. However, there are few studies on the development of the structure of lung tissue and the changes in elastic fibres of yak after birth. The purpose of this study was to investigate the changes of elastic fibers in the lungs of yaks after birth and the relationship between these changes and adaptation to hypoxic environment.ResultsIn this experiment, a histological method was employed to observe the changes in the lung tissue structure of yaks at four ages: 1 day old, 30 days old, 180 days old and adult. There was no significant difference in the area of a single alveolus between the 1-day-old and 30-day-old groups (P > 0.05). In yaks aged over 30 days, the single alveolar area gradually increased with age (P < 0.05). The observation of elastic fibres showed that elastic fibres in alveolar tissue increased significantly from the ages of 30 days to 180 days (P < 0.05) and stabilized after 180 days of age. Transcriptome analysis determined the highest levels of differentially expressed genes between 30 days of age and 180 days of age. KEGG analysis showed that the PI3K-Akt signalling pathway and MAPK pathway, which are involved in fibre formation, accounted for the largest proportion of differentially expressed genes between 30 days of age and 180 days of age. The expression levels of 36 genes related to fibre formation were analysed, and several genes related to elastic fibre formation and collagen fibre formation were determined to be highly expressed at the age of 30 days.ConclusionsThe content of elastic fibres in the alveolar tissue of yaks increases significantly after birth, but this change occurs only from 30 days of age to 180 days of age to make better use of oxygen in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.