We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca2+ disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control.
Photoperiod is one of the most important maternal factors with an impact on the offspring diapause induction of Locusta migratoria. Previous studies have shown that forkhead box protein O (FOXO) plays an important role in regulating insect diapause, but how photoperiod stimulates maternal migratory locusts to regulate the next generation of egg diapause through the FOXO signaling pathway still needs to be addressed. In this study, the transcriptomes of ovaries and fat bodies of adult locusts under a long and short photoperiod were obtained. Among the total of 137 differentially expressed genes (DEGs) in both ovaries and fat bodies, 71 DEGs involved in FOXO signaling pathways might be closely related to diapause induction. 24 key DEGs were selected and their expression profiles were confirmed to be consistent with the transcriptome results using qRT-PCR. RNA interference was then performed to verify the function of retinoic acid induced protein gene (rai1) and foxo. Egg diapause rates were significantly increased by RNAi maternal locusts rai1 gene under short photoperiods. However, the egg diapause rates were significantly decreased by knock down of the foxo gene in the maternal locusts under a short photoperiod. In addition, reactive oxygen species (ROS) and superoxide dismutase (SOD) activities were promoted by RNAi rai1. We identified the candidate genes related to the FOXO pathway, and verified the diapause regulation function of rai1 and foxo under a short photoperiod only. In the future, the researchers can work in the area to explore other factors and genes that can promote diapause induction under a long photoperiod.
Entomopathogenic fungus Metarhizium anisopliae obtain survival benefit meanwhile promote the nutrient absorption of root as an endophyte. However, little is known concerning molecular mechanisms in the process. We performed the transcriptome sequencing of A. hypogaea roots inoculated M. anisopliae and pathogenic Fusarium axysporum, respectively. There were 81323 unigenes from 132023 transcripts. Total 203 differentially expressed genes (DEGs) respond to the two fungi, including specific 76 and 34 DEGs distributed respectively in M. anisopliae and F. axysporum treatment. KEGG pathway enrichment for DEGs showed the two top2 were signal transductions of plant-pathogen interaction and plant hormone. By qRT-PCR, the mRNA level of 26 genes involved in plant-fungus interaction confirmed the reliability of the RNA-Seq data. The expression pattern of the key DEGs on jasmonic acid (JA) or salicylic acid (SA) signaling pathway presented regulating consistency with JA or SA concentration detected by HPLC-MS. Those significantly stronger down-regulated DEGs by M. anisopliae thanby F. axysporum linking to hypersensitive response and negative regulation of defense, and those specific up-regulated genes in M. anisopliae treatment may predict that the less immunity is conducive to symbiosis F. axysporum may trigger JA-mediated defense regulated by ERF branch of JA signaling pathway, whereas M. anisopliae does not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.