Osteosarcoma (OS) is the most common type of primary malignant bone tumor and mainly occurs in children and adolescent. Because of its early migration and invasion, OS has a poor prognosis. It has been reported that mircoRNAs (miRNAs) play a crucial role in the occurrence and development of multiple tumors. In this study, we identified the aberrant-expression of miR-143-3p in osteosarcoma and examined the role of miR-143-3p in OS development. Further, we searched the miR-143-3p target gene and verified its accuracy by luciferase experiments. Finally, we explored the relationship between miR-143-3p and FOS-Like antigen 2 (FOSL2). Our data indicated that miR-143-3p expression was substantially lower in OS tissues and cell-line compared with normal tissues, and was lower in patients with poor prognosis. In addition miR-143-3p inhibited OS cell proliferation and metastasis while promoting apoptosis. We next showed that FOSL2 was directly targeted by miR-143-3p and could reverse the inhibition caused by miR-143-3p. Finally, we found FOSL2 expression in OS cells was significantly higher compared with normal cells and negatively correlated with miR-143-3p. Thus, miR-143-3p directly and negatively targets FOSL2 to affect OS characteristics. This provides a new target for the treatment of OS and deserves further study.
Osteosarcoma is a very common type of malignant bone tumor in children and young adults and aberrant activation of Wnt/β-catenin signaling pathway has been discovered in osteosarcoma. The traditional Chinese medicine baicalein was proved to have anti-proliferative and anti-metastatic properties in osteosarcoma, but the mechanism remained poorly understood. In the present study, we assessed the effects of baicalein on osteosarcoma and detected the potential molecular mechanism. We found that baicalein significantly suppressed the proliferation of osteosarcoma cells in a concentration- and time-dependent manner. In additional, baicalein could induce apoptosis and cell cycle arrest and reduce cell motility. Moreover, the level of β-catenin and its target genes, including c-myc, cyclinD1, and survivin significantly decreased in baicalein-treated osteosarcoma cells, whereas exogenous expression of β-catenin could reverse the anti-proliferative and anti-metastatic effects of baicalein. Subsequently, we established a 143B xenograft tumor model and found that baicalein treatment significantly inhibited tumor growth accompanied with inhibiting Wnt/β-catenin pathway. Thus, these findings suggest that baicalein may be a potentially effective Chinese herbal medicine for therapeutics of osteosarcoma and Wnt/β-catenin signaling pathway may serve as an efficient molecular marker or predictive target for osteosarcoma.
Despite significant advancements in the diagnosis and treatment of osteosarcoma, the molecular mechanisms underpinning disease progression remain unclear. This work presents strong clinical and experimental evidence demonstrating that Notch signaling contributes to osteosarcoma progression. First, using a cohort of 12 patients, Notch genes were upregulated in tumors compared with adjacent normal tissue, and high tumor expression of Notch1 intercellular domain (NICD1) and the Notch target gene Hes1 correlated with poor chemotherapy response. Data mining of publicly available datasets confirmed that expression of Notch pathway genes is related to poor prognosis in osteosarcoma. On the basis of in vitro analysis, Notch signaling promoted osteosarcoma proliferation, enhanced chemoresistance, facilitated both migration and invasion, and upregulated stem cell-like characteristics. Xenograft models demonstrated that Notch signaling promotes primary tumor growth and pulmonary metastasis, and Notch inhibition is effective in reducing tumor size and preventing metastasis. Mechanistically, activated Notch signaling induces the expression of ephrinB1 and enhances the tumor-promoting ephrin reverse signaling. Overall, these findings provide functional evidence for Notch pathway genes as candidate biomarkers to predict prognosis in patients with osteosarcoma, and suggest a mechanistic rationale for the use of Notch inhibitors to treat osteosarcoma. Implications:The study provides preclinical evidence for Notch pathway as a molecular marker to predict osteosarcoma prognosis and as a therapeutic target against osteosarcoma. In addition, we identified a novel mechanism that ephrin reverse signaling acts as a key mediator of Notch pathway.
BackgroundSeveral studies have reported that circRNAs have a crucial function in the tumorigenesis of various cancers. However, the expression and function of circOMA1 in osteosarcoma is unknown.MethodscircOMA1 was identified through bioinformatics analysis. qRT-PCR was used to assess the expressions of circOMA1, miR-1294, and c-Myc in osteosarcoma tissues. Further, we performed functional experiments to explore the biological function of circOMA1 in osteosarcoma. Moreover, a luciferase reporter assay, RNA immunoprecipitation (RIP), and fluorescence in situ hybridisation (FISH) assay were performed to demonstrate the association between circOMA1 and miR-1294.ResultscircOMA1 exhibited considerable upregulation in osteosarcoma tissues compared with adjacent normal tissues. Silencing circOMA1 suppressed osteosarcoma progression in vitro and in vivo. Mechanically, circOMA1 functioned as a sponge of miR-1294 to upregulate c-Myc expression.ConclusioncircOMA1 played the role of an oncogene in osteosarcoma and promoted osteosarcoma progression by mediating the miR-1294/c-Myc pathway, which might be a new target for treating osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.