Summary
Purpose: Calorie restriction can be anticonvulsant in animal models. The ketogenic diet was designed to mimic calorie restriction and has been assumed to work by the same mechanisms. We challenged this assumption by profiling the effects of these dietary regimens in mice subjected to a battery of acute seizure tests.
Methods: Juvenile male NIH Swiss mice received ketogenic diet or a normal diet fed in restricted quantities (continuously or intermittently) for ∼12 days, starting at 3–4 weeks of age. Seizures were induced by the 6 Hz test, kainic acid, maximal electroshock, or pentylenetetrazol.
Results: The ketogenic and calorie‐restricted diets often had opposite effects depending on the seizure test. The ketogenic diet protected from 6 Hz–induced seizures, whereas calorie restriction (daily and intermittent) increased seizure activity. Conversely, calorie restriction protected juvenile mice against seizures induced by kainic acid, whereas the ketogenic diet failed to protect. Intermittent caloric restriction worsened seizures induced by maximal electroshock but had no effect on those induced by pentylenetetrazol.
Discussion: In contrast to a longstanding hypothesis, calorie restriction and the ketogenic diet differ in their acute seizure test profiles, suggesting that they have different underlying anticonvulsant mechanisms. These findings highlight the importance of the 6 Hz test and its ability to reflect the benefits of ketosis and fat consumption.
Glioblastoma stem-like cells (GSCs) play essential roles in glioma growth, radio- and chemo-resistance, and recurrence. Elimination of GSCs has therefore become a key strategy and challenge in glioblastoma therapy. Here, we show that melatonin, an indolamine derived from I-tryptophan, significantly inhibited viability and self-renewal ability of GSCs accompanied by a decrease of stem cell markers. We have identified EZH2-NOTCH1 signaling as the key signal pathway that regulated the effects of melatonin in the GSCs. Instead of transcriptionally silencing gene expression by generating a methylated epigenetic mark at histone 3 at lysine 27 (H3K27), EZH2 regulates NOTCH1 expression by directly binding to the NOTCH1 promoter. Moreover, correlation between the expressions of EZH2 and NOTCH intracellular domain 1 (NICD1) was observed in the clinical tumor samples, evidently supporting the existence of EZH2-NOTCH1 interaction in the gliomas and GSCs. Collectively, we demonstrated that melatonin, a potential tumor inhibitor, performs its function partly by suppressing GSC properties through EZH2-NOTCH1 signaling axis.
Cancer cells prefer glycolysis for energy metabolism, even when there is sufficient oxygen to make it unnecessary. This is called the Warburg effect, and it promotes tumorigenesis and malignant progression. In this study, we demonstrated that EZH2, a multifaceted oncogenic protein involved in tumor proliferation, invasion and metastasis, promotes glioblastoma tumorigenesis and malignant progression through activation of the Warburg effect. We observed that HIF1α is a target of EZH2 whose activation is necessary for EZH2-mediated metabolic adaption, and that HIF1α is activated upon EZH2 overexpression. EZH2 suppressed expression of EAF2, which in turn upregulated HIF1α levels. We conclude from these results that EZH2 promotes tumorigenesis and malignant progression in part by activating glycolysis through an EAF2-HIF1α signaling axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.