Land surface temperature (LST) retrieval is a key issue in infrared quantitative remote sensing. In this paper, a split window algorithm is proposed to estimate LST with daytime data in two mid-infrared channels (channel 66 (3.746~4.084 μm) and channel 68 (4.418~4.785 μm)) from Airborne Hyperspectral Scanner (AHS). The estimation is conducted after eliminating reflected direct solar radiance with the aid of water vapor content (WVC), the view zenith angle (VZA), and the solar zenith angle (SZA). The results demonstrate that the LST can be well estimated with a root mean square error (RMSE) less than 1.0 K. Furthermore, an error analysis for the proposed method is also performed in terms of the uncertainty of LSE and WVC, as well as the Noise Equivalent Difference Temperature (NEΔT). The results show that the LST errors caused by a LSE uncertainty of 0.01, a NEΔT of 0.33 K, and a WVC uncertainty of 10% are 0.4~2.8 K, 0.6 K, and 0.2 K, respectively. Finally, the proposed method is applied to the AHS data of 4 July 2008. The 12668 results show that the differences between the estimated and the ground measured LST for water, bare soil and vegetation areas are approximately 0.7 K, 0.9 K and 2.3K, respectively.
The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m2 and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m2, only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m2, the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.