Reversible regulation of membrane microstructures via non‐covalent interactions is of considerable interest yet remains a challenge. Herein, we discover a general one‐step approach to fabricate supramolecular porous polyelectrolyte membranes (SPPMs) from a single poly(ionic liquid) (PIL). The experimental results and theoretical simulation suggested that SPPMs were formed by a hydrogen‐bond‐induced phase separation of a PIL between its polar and apolar domains, which were linked together by water molecules. This unique feature was capable of modulating microscopic porous architectures and thus the global mechanical property of SPPMs by a rational design of the molecular structure of PILs. Such SPPMs could switch porosity upon thermal stimuli, as exemplified by dynamically adaptive transparency to thermal fluctuation. This finding provides fascinating opportunities for creating multifunctional SPPMs.
Reversible regulation of membrane microstructures via non‐covalent interactions is of considerable interest yet remains a challenge. Herein, we discover a general one‐step approach to fabricate supramolecular porous polyelectrolyte membranes (SPPMs) from a single poly(ionic liquid) (PIL). The experimental results and theoretical simulation suggested that SPPMs were formed by a hydrogen‐bond‐induced phase separation of a PIL between its polar and apolar domains, which were linked together by water molecules. This unique feature was capable of modulating microscopic porous architectures and thus the global mechanical property of SPPMs by a rational design of the molecular structure of PILs. Such SPPMs could switch porosity upon thermal stimuli, as exemplified by dynamically adaptive transparency to thermal fluctuation. This finding provides fascinating opportunities for creating multifunctional SPPMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.