Episodic memory has been studied extensively in the past few decades, but so far little is understood about how it is used to affect behavior. Here we postulate three learning paradigms: one-shot learning, replay learning, and online learning, where in the first two paradigms episodic memory is retrieved for decision-making or replayed to the neocortex for extracting semantic knowledge, respectively. In the third paradigm, the neocortex directly extracts information from online experiences as they occur, but does not have access to these experiences afterwards. By using visually-driven reinforcement learning in simulations, we found that whether an agent is able to solve a task by relying on the three learning paradigms depends differently on the number of learning trials and the complexity of the task. Episodic memory can, but does not always, have a major benefit for spatial learning, and its effect differs for the two modes of accessing episodic information. One-shot learning is initially faster than replay learning, but the latter reaches a better asymptotic performance. We believe that understanding how episodic memory drives behavior will be an important step towards elucidating the nature of episodic memory.
Reinforcement learning (RL) has become a popular paradigm for modeling animal behavior, analyzing neuronal representations, and studying their emergence during learning. This development has been fueled by advances in understanding the role of RL in both the brain and artificial intelligence. However, while in machine learning a set of tools and standardized benchmarks facilitate the development of new methods and their comparison to existing ones, in neuroscience, the software infrastructure is much more fragmented. Even if sharing theoretical principles, computational studies rarely share software frameworks, thereby impeding the integration or comparison of different results. Machine learning tools are also difficult to port to computational neuroscience since the experimental requirements are usually not well aligned. To address these challenges we introduce CoBeL-RL, a closed-loop simulator of complex behavior and learning based on RL and deep neural networks. It provides a neuroscience-oriented framework for efficiently setting up and running simulations. CoBeL-RL offers a set of virtual environments, e.g., T-maze and Morris water maze, which can be simulated at different levels of abstraction, e.g., a simple gridworld or a 3D environment with complex visual stimuli, and set up using intuitive GUI tools. A range of RL algorithms, e.g., Dyna-Q and deep Q-network algorithms, is provided and can be easily extended. CoBeL-RL provides tools for monitoring and analyzing behavior and unit activity, and allows for fine-grained control of the simulation via interfaces to relevant points in its closed-loop. In summary, CoBeL-RL fills an important gap in the software toolbox of computational neuroscience.
Reinforcement learning (RL) has become a popular paradigm for modeling animal behavior, analyzing neuronal representations, and studying their emergence during learning. This development has been fueled by advances in understanding the role of RL in both the brain and artificial intelligence. However, while in machine learning a set of tools and standardized benchmarks facilitate the development of new methods and their comparison to existing ones, in neuroscience, the software infrastructure is much more fragmented. Even if sharing theoretical principles, computational studies rarely share software frameworks, thereby impeding the integration or comparison of different results. Machine learning tools are also difficult to port to computational neuroscience since the experimental requirements are usually not well aligned. To address these challenges we introduce CoBeL-RL, a closed-loop simulator of complex behavior and learning based on RL and deep neural networks. It provides a neuroscience-oriented framework for efficiently setting up and running simulations. CoBeL-RL offers a set of virtual environments, e.g. T-maze and Morris water maze, which can be simulated at different levels of abstraction, e.g. a simple gridworld or a 3D environment with complex visual stimuli, and set up using intuitive GUI tools. A range of RL algorithms, e.g. Dyna-Q and deep Q-network algorithms, is provided and can be easily extended. CoBeL-RL provides tools for monitoring and analyzing behavior and unit activity, and allows for fine-grained control of the simulation via interfaces to relevant points in its closed-loop. In summary, CoBeL-RL fills an important gap in the software toolbox of computational neuroscience.
Episodic memory has been studied extensively in the past few decades, but so far little is understood about how it drives future behavior. Here we propose that episodic memory can facilitate learning in two fundamentally different modes: retrieval and replay, which is the reinstatement of hippocampal activity patterns during later sleep or awake quiescence. We study their properties by comparing three learning paradigms using computational modeling based on visually-driven reinforcement learning. Firstly, episodic memories are retrieved to learn from single experiences (one-shot learning); secondly, episodic memories are replayed to facilitate learning of statistical regularities (replay learning); and, thirdly, learning occurs online as experiences arise with no access to memories of past experiences (online learning). We found that episodic memory benefits spatial learning in a broad range of conditions, but the performance difference is meaningful only when the task is sufficiently complex and the number of learning trials is limited. Furthermore, the two modes of accessing episodic memory affect spatial learning differently. One-shot learning is typically faster than replay learning, but the latter may reach a better asymptotic performance. In the end, we also investigated the benefits of sequential replay and found that replaying stochastic sequences results in faster learning as compared to random replay when the number of replays is limited. Understanding how episodic memory drives future behavior is an important step toward elucidating the nature of episodic memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.