This paper investigates the problem of spacecraft relative navigation with respect to an unknown target during the close-proximity operations in the on-orbit service system. The serving spacecraft is equipped with a Time-of-Flight (ToF) camera for object recognition and feature detection. A fast and robust relative navigation strategy for acquisition is presented without any extra information about the target by using the natural circle features. The architecture of the proposed relative navigation strategy consists of three ingredients. First, a point cloud segmentation method based on the auxiliary gray image is developed for fast extraction of the circle feature point cloud of the target. Secondly, a new parameter fitting method of circle features is proposed including circle feature calculation by two different geometric models and results’ fusion. Finally, a specific definition of the coordinate frame system is introduced to solve the relative pose with respect to the uncooperative target. In order to validate the efficiency of the segmentation, an experimental test is conducted based on real-time image data acquired by the ToF camera. The total time consumption is saved by 94%. In addition, numerical simulations are carried out to evaluate the proposed navigation algorithm. It shows good robustness under the different levels of noises.
This paper investigates the problem of using an unmanned aerial vehicle (UAV) to track and hover above an uncooperative target, such as an unvisited area or an object that is newly discovered. A vision-based strategy integrating the metrology and the control is employed to achieve target tracking and hovering observation. First, by introducing a virtual camera frame, the reprojected image features can change independently of the rotational motion of the vehicle. The image centroid and an optimal observation area on the virtual image plane are exploited to regulate the relative horizontal and vertical distance. Then, the optic flow and gyro measurements are utilized to estimate the relative UAV-to-target velocity. Further, a gain-switching proportional-derivative (PD) control scheme is proposed to compensate for the external interference and model uncertainties. The closed-loop system is proven to be exponentially stable, based on the Lyapunov method. Finally, simulation results are presented to demonstrate the effectiveness of the proposed vision-based strategy in both hovering and tracking scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.