Large oilfields are often coincidentally located in major river deltas and wetlands, and potentially damage the structure, function and ecosystem service values of wetlands during oil exploration. In the present study, the effects of crude oil contamination during oil exploration on soil physical and chemical properties were investigated in marshes of the Momoge National Nature Reserve in Jilin Province, China. The concentrations of total petroleum hydrocarbons in the marsh soil near the oil wells are significantly higher than those in the adjacent control marsh. Soil water contents in oil-contaminated marshes are negatively correlated with soil temperature and are significantly lower than those in the control area, especially in fall. Crude oil contamination significantly increases the soil pH up to 8.0, and reduces available phosphorus concentrations in the soil. The concentrations of total organic carbon are significantly different among sampling sites. Therefore, crude oil contamination could potentially alkalinize marsh soils, adversely affect soil fertility and physical properties, and cause deterioration of the marshes in the Momoge National Nature Reserve. Phyto-remediation by planting Calamagrostis angustifolia has the potential to simultaneously restore and remediate the petroleum hydrocarbon-contaminated wetlands. Crude oil contamination affects the soil physical and chemical properties, so developing an effective restoration program in the Momoge wetland is neccesary.
Content and density of soil organic carbon (SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0-30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0-30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon (DOC), microbial biomass carbon (MBC), readily oxidized carbon (ROC) and readily mineralized carbon (RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates (< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0-5, 5-10, 10-20 and 20-30 cm soil layers increased. SOC density of micro-aggregates in the 0-30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.