In this study, we provide the first demonstration that aqueous complex coacervates can be electrospun into chemically robust polyelectrolyte complex (PEC) fiber mats. PECs form due to electrostatic complexation between oppositely charged polymers. Here, we exploit the ability of salt to plasticize PECs, thus enabling the electrospinning of solid fibers. Electrospinning solutions were composed of a pair of strong polyelectrolytes, poly(4-styrenesulfonic acid, sodium salt) and poly(diallyldimethylammonium chloride) using potassium bromide as the plasticizing salt. We systematically investigated the effect of salt concentration and electrospinning apparatus parameters on fiber formation. Electrospun PEC fiber mats were stable over a wide range of pH values, ionic strength conditions, and many organic solvents. This study demonstrates that the electrospinning of aqueous complex coacervates can generate chemically robust, free-standing PEC fiber mats while circumventing the reliance on organic solvents, the challenge of working with entangled polyelectrolytes in solution, and the need to chemically cross-link the as-spun fibers. These PEC fiber mats hold potential in applications where environmentally benign fiber mats are imperative, such as tissue engineering scaffolds and water purification technologies.
A triggerable Michael acceptor (TMAc) with programmable reactivity and reversibility for simultaneous coupling and decoupling has been developed for selective protein modification, self-immolative linker and orthogonally addressable hydrogel.
We present the first demonstration of the direct encapsulation of cargo into polyelectrolyte complex (PEC) fiber mats. This approach takes advantage of the intrinsic self-assembly characteristics of complex coacervates to simplify the formulation requirements to electrospin fibers containing a high loading and an even distribution of cargo. Two families of structurally similar fluorescent dyes were used as model cargo of varying hydrophobicity and charge and were encapsulated into coacervates of poly(4-styrenesulfonic acid, sodium salt) and poly(diallyldimethylammonium chloride). The coacervate phase behavior, dye partitioning, and resulting fibers were systematically investigated as a function of dye and salt concentration. Strong partitioning was facilitated by favorable electrostatic and π−π interactions but was adversely affected by increased salt. We further identified that dye and salt interactions can be treated as independent control parameters to modulate the properties and electrospinnability of the coacervate precursor solutions. These findings facilitate the use of electrospun PEC fibers in applications related to biomedicine, energy, and separations where cargo-loaded mats are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.