Comprehension of spoken narratives requires coordination of multiple language skills. As such, for normal children narrative skills develop well into the school years and, during this period, are particularly vulnerable in the face of brain injury or developmental disorder. For these reasons, we sought to determine the developmental trajectory of narrative processing using longitudinal fMRI scanning. 30 healthy children between the ages of 5 and 18 enrolled at ages 5, 6, or 7, were examined annually for up to 10 years. At each fMRI session, children were presented with a set of five, 30s–long, stories containing 9, 10, or 11 sentences designed to be understood by a 5 year old child. FMRI data analysis was conducted based on a hierarchical linear model (HLM) that was modified to investigate developmental changes while accounting for missing data and controlling for factors such as age, linguistic performance and IQ. Performance testing conducted after each scan indicated well above the chance (p < 0.002) comprehension performance. There was a linear increase with increasing age in bilateral superior temporal cortical activation (BA 21 and 22) linked to narrative processing. Conversely, age-related decreases in cortical activation were observed in bilateral occipital regions, cingulate and cuneus, possibly reflecting changes in the default mode networks. The dynamic changes observed in this longitudinal fMRI study support the increasing role of bilateral BAs 21 and 22 in narrative comprehension, involving non-domain-specific integration in order to achieve final story interpretation. The presence of a continued linear development of this area throughout childhood and teenage years with no apparent plateau, indicates that full maturation of narrative processing skills has not yet occurred and that it may be delayed to early adulthood.
Resting state networks (RSNs) are spontaneous, synchronous, low-frequency oscillations observed in the brains of subjects who are awake but at rest. A particular RSN called the default mode network (DMN) has been shown to exhibit changes associated with neurological disorders such as temporal lobe epilepsy or Alzheimer’s disease. Previous studies have also found that differing experimental conditions such as eyes-open versus eyes-closed can produce measurable changes in the DMN. These condition-associated changes have the potential of confounding the measurements of changes in RSNs related to or caused by disease state(s). In this study, we use fMRI measurements of resting-state connectivity paired with EEG measurements of alpha rhythm and employ independent component analysis, undirected graphs of partial spectral coherence, and spatiotemporal regression to investigate the effect of music-listening on RSNs and the DMN in particular. We observed similar patterns of DMN connectivity in subjects who were listening to music compared with those who were not, with a trend towards a more introspective pattern of resting-state connectivity during music-listening. We conclude that music-listening is a valid condition under which the DMN can be studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.