Large eddy simulations of shock wave/turbulent boundary layer interaction on a compression ramp at the Mach number [Formula: see text] and Reynolds number [Formula: see text] are performed to investigate the impact of the incipient and fully separated conditions on the development of the flow field. The quasi-dynamic subgrid-scale kinetic energy equation model, which combines the benefits of the gradient model with the eddy-viscosity model, has been applied. Compared with the previous experimental and numerical results, the simulation was validated. The flow structures, turbulence properties, vortex structures, and low-frequency unsteadiness are all investigated. The flow field of the incipient separation is attached and rarely impacted by shock. An evident separation bubble and localized high wall temperatures in fully separated flow are caused by the separation shock's significant reverse pressure gradient. The Reynolds stress components exhibit significant amplification in both cases, and the peak outward shifts from the near-wall region to the center of the free shear layer. Turbulent kinetic energy terms were analyzed, and the two scenarios show a significant difference. The power spectral density of the wall pressure fluctuations shows that the low-frequency motion of the incipient separation is not apparent relative to the fully separated flow.
In this paper, large-eddy simulation of the interaction between a shock wave and the hypersonic turbulent boundary layer in a compression corner with a fixed 34° deflection angle at Ma = 6 for different Reynolds number cases is conducted. For investigating the effects of the Reynolds number for hypersonic cases, three cases where the free-stream Reynolds numbers are 14000, 20000, and 30000/mm are selected. The averaged statistics, such as the mean velocity, the skin friction, the heat flux, and the wall pressure, are used in this paper. The flow structures in the compression ramp including the shock wave and interaction region are discussed. The decomposition of the mean skin-friction drag for the flat flow is extended to be used in the compression corner. In addition, the turbulent kinetic energy is studied through the decomposition of the mean skin-friction drag for the flat-plate region and the corner region. It is found that higher Reynolds numbers would increase the turbulent kinetic energy by turbulent dissipation at the interaction region, while higher Reynolds numbers would decrease the turbulent kinetic energy by turbulent dissipation after reattachment. In addition, it is also found that the turbulent kinetic energy is larger with a higher Reynolds number and higher turbulent kinetic energy inhibits the movement from the separation point to the inflection point (x = 0 mm), which deduces larger separation bubbles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.