The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C (FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1 (ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT, SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways. Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1, which positively regulates transition to flowering at least partly by repressing FLC protein stability.
Plant immune responses are tightly regulated to ensure their appropriate deployment. Overexpression of TOPLESS-RELATED 1 (TPR1), a SUPPRESSOR OF npr1-1, CONSTITUTIVE 1 (SNC1)-interacting protein, results in autoimmunity that reduces plant growth and development. However, how TPR1 activity is regulated remains unknown. Loss of function of SIZ1, a (SUMO) E3 ligase, induces an autoimmune response, partially due to elevated SNC1 levels. Here we show that SNC1 expression is upregulated in Arabidopsis thaliana siz1-2 due to positive-feedback regulation by salicylic acid. SIZ1 physically interacts with TPR1 and facilitates its SUMO modification. The K282 and K721 residues in TPR1 serve as critical SUMO attachment sites. Simultaneous introduction of K282R and K721R substitutions in TPR1 blocked its SUMOylation, enhanced its transcriptional co-repressor activity, and increased its association with HISTONE DEACETYLASE 19 (HDA19), suggesting that SUMOylation of TPR1 represses its transcriptional co-repressor activity and inhibits its interaction with HDA19. In agreement with this finding, the simultaneous introduction of K282R and K721R substitutions enhanced TPR1-mediated immunity, and the tpr1 mutation partially suppressed autoimmunity in siz1-2. These results demonstrate that SIZ1-mediated SUMOylation of TPR1 represses plant immunity, which at least partly contributes to the suppression of autoimmunity under nonpathogenic conditions to ensure proper plant development.
SIZ1 is a small ubiquitin‐related modifier (SUMO) E3 ligase that mediates post‐translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress responses in Arabidopsis. However, the role of SUMO E3 ligases in crop plants is largely unknown. Here, we identified and characterized two Glycine max (soybean) SUMO E3 ligases, GmSIZ1a and GmSIZ1b. Expression of GmSIZ1a and GmSIZ1b was induced in response to salicylic acid (SA), heat, and dehydration treatment, but not in response to cold, abscisic acid (ABA), and NaCl treatment. Although GmSIZ1a was expressed at higher levels than GmSIZ1b, both genes encoded proteins with SUMO E3 ligase activity in vivo. Heterologous expression of GmSIZ1a or GmSIZ1b rescued the mutant phenotype of Arabidopsis siz1‐2, including dwarfism, constitutively activated expression of pathogen‐related genes, and ABA‐sensitive seed germination. Simultaneous downregulation of GmSIZ1a and GmSIZ1b (GmSIZ1a/b) using RNA interference (RNAi)‐mediated gene silencing decreased heat shock‐induced SUMO conjugation in soybean. Moreover, GmSIZ1RNAi plants exhibited reduced plant height and leaf size. However, unlike Arabidopsis siz1‐2 mutant plants, flowering time and SA levels were not significantly altered in GmSIZ1RNAi plants. Taken together, our results indicate that GmSIZ1a and GmSIZ1b mediate SUMO modification and positively regulate vegetative growth in soybean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.