The World's grasslands are under severe threat from on-going degradation, yet they are largely ignored in sustainable development agendas. This degradation is undermining the capacity of grasslands to support biodiversity, ecosystem services, and human wellbeing. In this Perspective, we examine the current state of grasslands worldwide and explore the extent and dominant drivers of global grassland degradation. We identify actions that are critical to the development of socio-ecological solutions to combat degradation and promote restoration of global grasslands. Specifically, we argue that progress can be made by: increasing recognition of grasslands in global policy, developing standardised indicators of grassland degradation, using scientific innovation for effective restoration at regional and landscape scales, and enhancing knowledge transfer and data sharing on restoration experiences. The integration of these strategies into sustainability policy should help to halt grassland degradation and enhance restoration success, and protect the socio-economic, cultural and ecological benefits that grasslands provide.Grasslands, comprising open grassland, grassy shrublands and savannah, cover about 40% of the Earth's surface and some 69% of the world's agricultural land area 1-3 . Not only do they serve as an important global reservoir of biodiversity, including many iconic and endemic species, but also, they provide a wide range of material and non-material benefits to humans and our quality of life. These benefits include a wide range of ecosystem services, such as food production, water supply and regulation, carbon storage and climate mitigation, pollination, and a host of cultural services 1-3 . Despite its importance, grassland degradation is widespread and accelerating in many parts of the world 4-6 with as much as 49% of grassland area worldwide having been degraded to some extent 5,7,8 .Grassland degradation poses an enormous threat to the hundreds of millions of people who rely on grasslands worldwide for food, fuel, fibre and medicinal products, as well as their multiple cultural values 9,10 . In terms of livestock production, the global cost of grassland degradation has been estimated at $6.8 billion 11 , with the impact on human welfare being particularly severe in regions where most the population is below the poverty line Grassland degradation also creates major environmental problems, given that grasslands play a critical role in biodiversity conservation, climate and water regulation, and global biogeochemical cycles 2,4 . For example, the conversion of tropical grassy biomes to arable cropland poses a significant threat to biodiversity given that they have a vertebrate species richness comparable to forests 12 , while the recent expansion of croplands in United States has caused widespread conversion of prairie grasslands, with considerable cost to wildlife 6 . Moreover, the conversion of grasslands to arable cropland and disturbance through overgrazing, fire and invasive species can lead to signif...
Ca is absorbed by roots and transported upward through the xylem to the apoplastic space of the leaf, after which it is deposited into the leaf cell. In Arabidopsis (Arabidopsis thaliana), the tonoplast-localized Ca/H transporters CATION EXCHANGER1 (CAX1) and CAX3 sequester Ca from the cytosol into the vacuole, but it is not known what transporter mediates the initial Ca influx from the apoplast to the cytosol. Here, we report that Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) encodes a protein with Ca influx channel activity and is expressed in the leaf areas surrounding the free endings of minor veins, which is the primary site for Ca unloading from the vasculature and influx into leaf cells. Under hydroponic growth conditions, with 0.1 mm Ca, both Arabidopsis cngc2 and cax1cax3 loss-of-function mutants grew normally. Increasing the Ca concentration to 10 mm induced HO accumulation, cell death, and leaf senescence and partially suppressed the hypersensitive response to avirulent pathogens in the mutants but not in the wild type. In vivo apoplastic Ca overaccumulation was found in the leaves of cngc2 and cax1cax3 but not the wild type under the 10 mm Ca condition, as monitored by Oregon Green BAPTA 488 5N, a low-affinity and membrane-impermeable Ca probe. Our results indicate that CNGC2 likely has no direct roles in leaf development or the hypersensitive response but, instead, that CNGC2 could mediate Ca influx into leaf cells. Finally, the in vivo extracellular Ca imaging method developed in this study provides a new tool for investigating Ca dynamics in plant cells.
Background Stipa grandis (Poaceae) is one of the dominant species in a typical steppe of the Inner Mongolian Plateau. However, primarily due to heavy grazing, the grasslands have become seriously degraded, and S. grandis has developed a special growth-inhibition phenotype against the stressful habitat. Because of the lack of transcriptomic and genomic information, the understanding of the molecular mechanisms underlying the grazing response of S. grandis has been prohibited.ResultsUsing the Illumina HiSeq 2000 platform, two libraries prepared from non-grazing (FS) and overgrazing samples (OS) were sequenced. De novo assembly produced 94,674 unigenes, of which 65,047 unigenes had BLAST hits in the National Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value < 10-5). In total, 47,747, 26,156 and 40,842 unigenes were assigned to the Gene Ontology (GO), Clusters of Orthologous Group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. A total of 13,221 unigenes showed significant differences in expression under the overgrazing condition, with a threshold false discovery rate ≤ 0.001 and an absolute value of log2Ratio ≥ 1. These differentially expressed genes (DEGs) were assigned to 43,257 GO terms and were significantly enriched in 32 KEGG pathways (q-value ≤ 0.05). The alterations in the wound-, drought- and defense-related genes indicate that stressors have an additive effect on the growth inhibition of this species.ConclusionsThis first large-scale transcriptome study will provide important information for further gene expression and functional genomics studies, and it facilitated our investigation of the molecular mechanisms of the S. grandis grazing response and the associated morphological and physiological characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.