Recently, micro base station antennas have begun to play a more important role in 5G wireless communication, with the rapid development of modern smart medical care, the Internet of things, and portable electronic devices. Meanwhile, in response to the global commitment to long-term carbon neutrality, graphene film has received significant attention in the field of antennas due to its low carbon environmental impact and high electrical conductivity properties. In this work, a conformal array antenna based on highly conductive graphene films (CGF) is proposed for 5G millimeter-wave (MMW) applications. The proposed antenna consists of three antenna arrays, with eight patch elements in each array, operating at 24 GHz, with linear polarization. Each antenna array’s current amplitude distribution coefficient is constructed by synthesizing a series-feeding linear array using the Chebyshev method. The measurement results demonstrated that the proposed CGF antenna exhibits a peak realized gain higher than 8 dBi in the bandwidth of 23.0–24.7 GHz. The proposed antenna achieves three independent beams from bore-sight to ±37° in conformal installations, with a cylinder radius of 30 mm, showing excellent beam-pointing performance. These characteristics indicate that the CGF can be used for the design of MMW micro base station antennas, fulfilling the requirements of the conformal carrier platform for a lightweight and compact antenna.
The development of antenna miniaturization technology is limited by the principle of electromagnetic radiation. In this paper, the structure size of the antenna is reduced by nearly two orders of magnitude by using Acoustic excitation instead of electromagnetic radiation. For this magnetoelectric (ME) antenna, the design, simulation and experiment were introduced. Firstly, the basic design theory of magnetoelectric antennas has been refined on a Maxwell’s equations basis, and the structure of the ME antenna is designed by using the Mason equivalent circuit model. The influence mechanism of structure on antenna performance is studied by model simulation. In order to verify the correctness of the proposed design scheme, an antenna sample operating at 2.45 GHz was fabricated and tested. The gain measured is −15.59 dB, which is better than the latest research that has been reported so far. Therefore, the ME antenna is expected to provide an effective new scheme for antenna miniaturization technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.