An appropriate model to correct thermal radiation anisotropy is important for the wide applications of land surface temperature (LST). This paper evaluated the performance of three published directional thermal radiation models-the Roujean-Lagouarde (RL) model, the Bidirectional Reflectance Distribution Function (BRDF) model, and the Vinnikov model-at canopy and pixel scale using simulation, airborne, and satellite data. The results at canopy scale showed that (1) the three models could describe directional anisotropy well and the Vinnikov model performed the best, especially for erectophile canopy or low leaf area index (LAI); (2) the three models reached the highest fitting accuracy when the LAI varied from 1 to 2; and (3) the capabilities of the three models were all restricted by the hotspot effect, plant height, plant spacing, and three-dimensional structure. The analysis at pixel scale indicated a consistent result that the three models presented a stable effect both on verification and validation, but the Vinnikov model had the best ability in the erectophile canopy (savannas and grassland) and low LAI (barren or sparsely vegetated) areas. Therefore, the Vinnikov model was calibrated for different land cover types to instruct the angular correction of LST. Validation with the Surface Radiation Budget Network (SURFRAD)-measured LST demonstrated that the root mean square (RMSE) of the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product could be decreased by 0.89 K after angular correction. In addition, the corrected LST showed better spatial uniformity and higher angular correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.