Among Chinese adults, higher occupational or nonoccupational physical activity was associated with significantly lower risks of major CVD.
Plants commonly respond to pathogen infection by increasing ethylene production, but it is not clear if this ethylene does more to promote disease susceptibility or disease resistance. Ethylene production and/or responsiveness can be altered by genetic manipulation. The present study used mutagenesis to identify soybean (Glycine max L. Merr.) lines with reduced sensitivity to ethylene. Two new genetic loci were identified, Etr1 and Etr2. Mutants were compared with isogenic wild-type parents for their response to different soybean pathogens. Plant lines with reduced ethylene sensitivity developed similar or less-severe disease symptoms in response to virulent Pseudomonas syringae pv glycinea and Phytophthora sojae, but some of the mutants developed similar or moresevere symptoms in response to Septoria glycines and Rhizoctonia solani. Gene-for-gene resistance against P. syringae expressing avrRpt2 remained effective, but Rps1-k-mediated resistance against P. sojae races 4 and 7 was disrupted in the strong ethylene-insensitive etr1-1 mutant. Rps1-k-mediated resistance against P. sojae race 1 remained effective, suggesting that the Rps1-k locus may encode more than one gene for disease resistance. Overall, our results suggest that reduced ethylene sensitivity can be beneficial against some pathogens but deleterious to resistance against other pathogens.
SummaryBackgroundThe age-specific association between blood pressure and vascular disease has been studied mostly in high-income countries, and before the widespread use of brain imaging for diagnosis of the main stroke types (ischaemic stroke and intracerebral haemorrhage). We aimed to investigate this relationship among adults in China.Methods512 891 adults (59% women) aged 30–79 years were recruited into a prospective study from ten areas of China between June 25, 2004, and July 15, 2008. Participants attended assessment centres where they were interviewed about demographic and lifestyle characteristics, and their blood pressure, height, and weight were measured. Incident disease was identified through linkage to local mortality records, chronic disease registries, and claims to the national health insurance system. We used Cox regression analysis to produce adjusted hazard ratios (HRs) relating systolic blood pressure to disease incidence. HRs were corrected for regression dilution to estimate associations with long-term average (usual) systolic blood pressure.FindingsDuring a median follow-up of 9 years (IQR 8–10), there were 88 105 incident vascular and non-vascular chronic disease events (about 90% of strokes events were diagnosed using brain imaging). At ages 40–79 years (mean age at event 64 years [SD 9]), usual systolic blood pressure was continuously and positively associated with incident major vascular disease throughout the range 120–180 mm Hg: each 10 mm Hg higher usual systolic blood pressure was associated with an approximately 30% higher risk of ischaemic heart disease (HR 1·31 [95% CI 1·28–1·34]) and ischaemic stroke (1·30 [1·29–1·31]), but the association with intracerebral haemorrhage was about twice as steep (1·68 [1·65–1·71]). HRs for vascular disease were twice as steep at ages 40–49 years than at ages 70–79 years. Usual systolic blood pressure was also positively associated with incident chronic kidney disease (1·40 [1·35–1·44]) and diabetes (1·14 [1·12–1·15]). About half of all vascular deaths in China were attributable to elevated blood pressure (ie, systolic blood pressure >120 mm Hg), accounting for approximately 1 million deaths (<80 years of age) annually.InterpretationAmong adults in China, systolic blood pressure was continuously related to major vascular disease with no evidence of a threshold down to 120 mm Hg. Unlike previous studies in high-income countries, blood pressure was more strongly associated with intracerebral haemorrhage than with ischaemic stroke. Even small reductions in mean blood pressure at a population level could be expected to have a major impact on vascular morbidity and mortality.FundingUK Wellcome Trust, UK Medical Research Council, British Heart Foundation, Cancer Research UK, Kadoorie Charitable Foundation, Chinese Ministry of Science and Technology, and the National Science Foundation of China.
BackgroundDespite the well-recognised health benefits of fresh fruit consumption, substantial uncertainties remain about its potential effects on incident diabetes and, among those with diabetes, on risks of death and major vascular complications.Methods and findingsBetween June 2004 and July 2008, the nationwide China Kadoorie Biobank study recruited 0.5 million adults aged 30–79 (mean 51) y from ten diverse localities across China. During ~7 y of follow-up, 9,504 new diabetes cases were recorded among 482,591 participants without prevalent (previously diagnosed or screen-detected) diabetes at baseline, with an overall incidence rate of 2.8 per 1,000 person-years. Among 30,300 (5.9%) participants who had diabetes at baseline, 3,389 deaths occurred (overall mortality rate 16.5 per 1,000), along with 9,746 cases of macrovascular disease and 1,345 cases of microvascular disease. Cox regression yielded adjusted hazard ratios (HRs) associating each disease outcome with self-reported fresh fruit consumption, adjusting for potential confounders such as age, sex, region, socio-economic status, other lifestyle factors, body mass index, and family history of diabetes. Overall, 18.8% of participants reported consuming fresh fruit daily, and 6.4% never/rarely (non-consumers), with the proportion of non-consumers about three times higher in individuals with previously diagnosed diabetes (18.9%) than in those with screen-detected diabetes (6.7%) or no diabetes (6.0%). Among those without diabetes at baseline, higher fruit consumption was associated with significantly lower risk of developing diabetes (adjusted HR = 0.88 [95% CI 0.83–0.93] for daily versus non-consumers, p < 0.001, corresponding to a 0.2% difference in 5-y absolute risk), with a clear dose–response relationship. Among those with baseline diabetes, higher fruit consumption was associated with lower risks of all-cause mortality (adjusted HR = 0.83 [95% CI 0.74–0.93] per 100 g/d) and microvascular (0.72 [0.61–0.87]) and macrovascular (0.87 [0.82–0.93]) complications (p < 0.001), with similar HRs in individuals with previously diagnosed and screen-detected diabetes; estimated differences in 5-y absolute risk between daily and non-consumers were 1.9%, 1.1%, and 5.4%, respectively. The main limitation of this study was that, owing to its observational nature, we could not fully exclude the effects of residual confounding.ConclusionIn this large epidemiological study in Chinese adults, higher fresh fruit consumption was associated with significantly lower risk of diabetes and, among diabetic individuals, lower risks of death and development of major vascular complications.
The Gy14 cucumber (Cucumis sativus) is resistant to oomyceteous downy mildew (DM), bacterial angular leaf spot (ALS) and fungal anthracnose (AR) pathogens, but the underlying molecular mechanisms are unknown. Quantitative trait locus (QTL) mapping for the disease resistances in Gy14 and further map-based cloning identified a candidate gene for the resistant loci, which was validated and functionally characterized by spatial-temporal gene expression profiling, allelic diversity and phylogenetic analysis, as well as local association studies. We showed that the triple-disease resistances in Gy14 were controlled by the cucumber STAYGREEN (CsSGR) gene. A single nucleotide polymorphism (SNP) in the coding region resulted in a nonsynonymous amino acid substitution in the CsSGR protein, and thus disease resistance. Genes in the chlorophyll degradation pathway showed differential expression between resistant and susceptible lines in response to pathogen inoculation. The causal SNP was significantly associated with disease resistances in natural and breeding populations. The resistance allele has undergone selection in cucumber breeding. The durable, broad-spectrum disease resistance is caused by a loss-of-susceptibility mutation of CsSGR. Probably, this is achieved through the inhibition of reactive oxygen species over-accumulation and phytotoxic catabolite over-buildup in the chlorophyll degradation pathway. The CsSGR-mediated host resistance represents a novel function of this highly conserved gene in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.