Zika virus (ZIKV) has become a global public health emergency due to its rapidly expanding range and its ability to cause severe congenital defects such as microcephaly. However, there are no FDA-approved therapies or vaccines against ZIKV infection. Through our screening of viral entry inhibitors, we found that chloroquine (CQ), a commonly used antimalarial and a FDA-approved drug that has also been repurposed against other pathogens, could significantly inhibit ZIKV infection in vitro, by blocking virus internalization. We also demonstrated that CQ attenuates ZIKV-associated morbidity and mortality in mice. Finally, we proved that CQ protects fetal mice from microcephaly caused by ZIKV infection. Our methodology of focusing on previously identified antivirals in screens for effectiveness against ZIKV proved to be a rapid and efficient means of discovering new ZIKV therapeutics. Selecting drugs that were previously FDA-approved, such as CQ, also improves the likelihood that they may more quickly reach stages of clinical testing and use by the public.
BackgroundDengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus found in tropical and sub-tropical regions around the world. Vaccines against DENV are currently unavailable. Guanylate-binding protein 1 (GBP1) is one of the Interferon (IFN) stimulated genes (ISGs) and has been shown important for host immune defense against various pathogens. However, the role of GBP1 during DENV infection remains unclarified. In this study, we evaluated the relevance of GBP1 to DENV infection in in vitro model.FindingsQuantitative RT-PCR (qRT-PCR) and Western blot showed that the expression of mouse Gbp1 was dramatically upregulated in DENV-infected RAW264.7 cells. The intracellular DENV loads were significantly higher in Gbp1 silenced cells compared with controls. The expression levels of selective anti-viral cytokines were decreased in Gbp1 siRNA treated cells, while the transcription factor activity of NF-κB was impaired upon GBP1 silencing during infection.ConclusionsOur data suggested that GBP1 plays an antiviral role during DENV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.