Flexible-joint manipulators (FJMs) have been widely used in the fields of industry, agriculture, medical service, aerospace, etc. However, the FJMs in practical applications inevitably encounter various uncertainties including matched and mismatched disturbances. In this paper, we consider the high precision tracking control problem of FJMs in the presence of unknown lumped matched and mismatched disturbances. An efficient model-assisted composite control approach is proposed by integrating two reduced-order extended state observers (RESOs), a second-order command filtered backstepping (SCFB) technique and an error compensation dynamic system. Unlike some existing methods, the RESOs constructed with partial known model information are capable of estimating and compensating the matched and mismatched disturbances simultaneously. In addition, by employing the SCFB with an error compensation system, the proposed approach can not only overcome the problem of “explosion of complexity” inherent in backstepping, but also reduce the filtering errors arising from the command filters. The stability of the resulting control system and the convergence of error signals are guaranteed by Lyapunov stability theory. Comparative simulations are conducted for a single-link FJM with both matched and mismatched disturbances, and the results show that the proposed approach achieves a better tracking performance, i.e., compared with conventional backstepping method and adaptive fuzzy command filtered control method, the tracking accuracy is improved by 99.5% and 99.2%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.