Electroconvulsive therapy (ECT) is one of the most effective treatments for major depression disorder (MDD). ECT can induce neurogenesis and synaptogenesis in hippocampus, which contains distinct subfields, e.g., the cornu ammonis (CA) subfields, a granule cell layer (GCL), a molecular layer (ML), and the subiculum. It is unclear which subfields are affected by ECT and whether we predict the future treatment response to ECT by using volumetric information of hippocampal subfields at baseline? In this study, 24 patients with severe MDD received the ECT and their structural brain images were acquired with magnetic resonance imaging before and after ECT. A state-of-the-art hippocampal segmentation algorithm from Freesurfer 6.0 was used. We found that ECT induced volume increases in CA subfields, GCL, ML and subiculum. We applied a machine learning algorithm to the hippocampal subfield volumes at baseline and were able to predict the change in depressive symptoms (r = 0.81; within remitters, r = 0.93). Receiver operating characteristic analysis also showed robust prediction of remission with an area under the curve of 0.90. Our findings provide evidence for particular hippocampal subfields having specific roles in the response to ECT. We also provide an analytic approach for generating predictions about clinical outcomes for ECT in MDD.
Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.
Objective. The abnormal expression of LncRNA H19 and miR-140-5p has been linked to ovarian cancer (OC). Whether H19 directly regulates miR-140-5p in ovarian cancer cells has been unclear. In this study, we deeply explored the relationship between H19 and miR-140-5p in ovarian cancer and the mechanism of action in regulating OC progression. Methods. A total of 66 patients with OC admitted to the hospital from June 2017 to June 2019 were selected as the research group (RG), and meanwhile, 60 cases of healthy subjects were selected as the control group (CG). In addition, OC cells and normal ovarian epithelial cells were used to detect H19 and miR-140-5p expression levels and to analyze the effect of H19 on OC cells. The activation of the PI3K/AKT pathway and downstream proteins were analyzed by western blot. Results. H19 was highly expressed while miR-140-5p was lowly expressed in OC patients and cell lines ( P < 0.050 ). The proliferation, invasion, migration ability, and epithelial-mesenchymal transition (EMT) of OC cells were reduced after inhibiting H19 expression, and the apoptosis rate was increased. Transfection of cells with miR-140-5p mimics brought opposite effects. Online prediction and dual-luciferase reporter (DLR) confirmed that H19 directly binds miR-140-5p. Western blot assay indicated overexpression activated the PI3K/AKT signaling pathway in OC cells. Moreover, overexpression promoted tumor growth in nude mice and was suppressed by PI3K inhibitor. Conclusion. LncRNA H19 downregulation of miR-140-5p to activate the PI3K/AKT signaling pathway and promote the proliferation, invasion, migration and EMT of OC.
PurposeTo investigate the efficacy and safety of saffron in the treatment of major depressive disorder (MDD) in comparison to placebo and synthetic antidepressants.Patients and methodsWe conducted a systematic search in several electronic databases as well as manual search in bibliographies of relevant studies. We included randomized controlled trials that investigated the efficacy and safety of saffron for treating MDD in adults in comparison to either placebo or synthetic antidepressants. Primary outcome was change in scores on depressive symptoms from baseline. Secondary outcomes included remission rate, response rate, and drop-out rate for all reasons. We chose a random-effects model in order to obtain more conservative results. Standardized mean differences (SMDs) and odds ratios (ORs) with 95% confidence intervals (CIs) were estimated as the overall effect index by inverse variance models.ResultsSeven studies were included in this meta-analysis. Overall quality of these included studies was moderate. As for the primary outcome, saffron showed more improvements in depression symptoms when compared with placebo, with an SMD of −1.22 (95% CI −1.94, −0.49, P=0.001). Meanwhile, saffron was as effective as synthetic antidepressants, with an SMD of 0.16 (95% CI −0.25, 0.57, P=0.44). Moderate heterogeneity existed in our analysis. Through subgroup analyses, we found that treatment dosage and duration, types of synthetic antidepressants administered in the comparison group, and outcome measures could explain most of the variance. No differences were found in remission rate, response rate, or drop-out rate.ConclusionSaffron was effective in the treatment of MDD and had comparable efficacy to synthetic antidepressants. Saffron was also a safe drug without serious adverse events reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.