β-amyloid hypothesis is the predominant hypothesis in the study of pathogenesis of Alzheimer's disease. This hypothesis claims that aggregation and neurotoxic effects of amyloid β (Aβ) is the common pathway in a variety of etiological factors for Alzheimer's disease. Aβ peptide derives from amyloid precursor protein (APP). β-sheet breaker peptides can directly prevent and reverse protein misfolding and aggregation in conformational disorders. Based on the stereochemical structure of Aβ1-42 and aggregation character, we had designed a series of β-sheet breaker peptides in our previous work and screened out a 10-residue peptide β-sheet breaker peptide, H102. We evaluated the effects of H102 on expression of P-tau, several associated proteins, inflammatory factors and apoptosis factors, and examined the cognitive ability of APP transgenic mice by behavioral test. This study aims to validate the β-amyloid hypothesis and provide an experimental evidence for the feasibility of H102 treatment for Alzheimer's disease.
Background: Alzheimer's disease (AD), is a progressive neurodegenerative disease that is characterized by cognitive loss. Most researchers believe that aggregation and accumulation of β-amyloid peptides (Aβ) in brain cells are the central pathological hallmark of this disease.Methods: Based on the amyloid hypothesis, a 10 amino acids β-sheet breaker peptide HPYD (His-Lys-Gln-Leu-Pro-Phe-Tyr-Glu-Glu-Asp) was designed according to the structure and sequence of the previous designed peptide H102. Accelerated stability test, thioflavine T (ThT) fluorescence spectral analysis and transmission electron microscopy (TEM) imaging were performed to detect the stability and inhibitory effects on the aggregation of Aβ1−42 by H102 and HPYD. FITC-labeled HPYD was first tested to determine whether it could be transferred along the olfactory pathway to the brain after nasal administration to mice. Subsequently, the Morris Water Maze (MWM) test for behavioral analysis was used to investigate the learning and memory ability of APP/PS1 transgenic mice by HPYD. Immunohistochemistry and western blot analysis was performed to determine the role of HPYD on Aβ and APP protein levels. In addition, microarray analysis was used to evaluate the effect of HPYD on gene expression in AD mouse models.Results: Our in vitro results demonstrated that HPYD had enhanced stability and inhibitory effects on Aβ1−42 aggregation compared to H102. HPYD could be delivered into the brain through nasal administration and improved the learning and memory ability in APP/PS1 transgenic mouse models by reducing Aβ and APP protein levels. In addition, microarray analyses suggested that several genes related to the inflammatory pathway, AD and gluco-lipid metabolism were dysregulated and could be restored to almost normal levels after HPYD administration to mice.Conclusions: Our results demonstrated that HPYD could be a potential therapeutic drug candidate for the treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.