Endometriosis (EMs) is defined as the presence of tissue which somewhat resembles endometrial glands and stroma outside the uterus, and elicits fibrosis. Fibrosis is the main factor resulting in pain and infertility, while the aetiology of endometrial fibrosis is unknown. There is strong evidence from numerous experiments showing that connective tissue growth factor (CCN2) plays a central role in fibrogenesis. Exosomal miR-214-3p can regulate the expression of CCN2 through binding to complementary sites in the 3′ untranslated region. This study aimed to explore the role of exosomal miR-214-3p in endometriosis fibrosis and the relationship between CCN2 and miR-214-3p in endometriosis fibrosis. Our results demonstrated that miR-214-3p was significantly down-regulated and CCN2 was up-regulated in EMs ectopic lesion and stromal cells compared with EMs eutopic and endometrium of patients without endometriosis. Exosomal miR-214-3p can inhibit fibrosis in EMs through targeting CCN2. The results were explored and verified in vitro and in vivo, respectively. Cell co-culture was used to explore the contributions of exosomes to intercellular information transmission of miR-214-3p. The results showed that exosomes play a pivotal role in the transportation of miR-214-3p between cells. Furthermore, level of exosomal miR-214-3p in endometriosis patients' serum was lower than that in patients without endometriosis. In conclusion, exosomal miR-214-3p can inhibit fibrosis in EMs by targeting CCN2. MiR-214-3p may be considered as a bio-marker and has a potential therapeutic effect in EMs.
Ferroptosis is a distinct form of cell death mechanism different from the traditional ones. Ferroptosis is characterized biochemically by lipid peroxidation, iron accumulation, and glutathione deficiency. It has already demonstrated significant promise in antitumor therapy. Cervical cancer (CC) progression is closely linked to iron regulation and oxidative stress. Existing research has investigated the role of ferroptosis in CC. Ferroptosis could open up a new avenue of research for treating CC. This review will describe the factors and pathways and the research basis of ferroptosis, which is closely related to CC. Furthermore, the review may provide potential future directions for CC research, and we believe that more studies concerning the therapeutic implications of ferroptosis in CC will come to notice.
The current treatments of ovarian cancer (OC) do not yield satisfactory outcomes. Hence, it is necessary to find new treatment targets for OC. In this study, a comprehensive bioinformatic analysis was conducted to identify differentially expressed genes (DEGs) between OC and control tissues. Five datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by comparing gene expression between OC and control tissues. Module analysis of DEGs was performed on the STRING database and GEPIA. Kaplan Meier plotter and GEPIA database analysis the overall survival. Finally, SLC7A11 was found to be is the hubgene. And we confirm that the protein expression of SLC7A11 was increased in OC tissues. Analysis of a variety of tumor gene databases showed that SLC7A11 gene regulated the processes of OC. The low mutation rate of the gene (which were of amplified type) and high mRNA expression were associated with poor prognosis of OC patients.Using erastin-treated ovarian cancer (OC) cell lines, we examined the relationship between ferroptosis and OC. Results showed that OC tissues contained higher malondialdehyde (MDA) levels than normal tissues. Unlike normal ovarian epithelial cells which are not sensitive to erastin, the OC cell line, ES-2 is very sensitive to erastin. Here, we found that ferrostatin-1 treatment increased levels of reactive oxygen species (ROS), malondialdehyde, and SLC7A11 protein expression. These results provide an important theoretical basis for further studies into the role of SLC7A11, the effective biomarker and potential drug target, in the occurrence and development of OC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.