Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.
The effects of graphene oxide (GO) on the early-age hydration process and mechanical properties of Portland cement paste were experimentally investigated in this study. Based on an isothermal calorimeter measurement, the hydration rate of cement was observed to increase with the increase of GO content by nucleation effect. On the other hand, the electrical resistivity development of GO-cement paste was monitored using a non-contact electrical resistivity device. The result showed that electrical the resistivity of GO-cement paste was evidently higher than that of plain cement paste. However, cement paste with excessive amounts of GO exhibited a decreased electrical resistivity due to the massive ion diffusion caused by GO. Compared to plain cement paste, the GO-cement paste exhibited obviously higher compressive and flexural strengths, but the enhancements in compressive strength began to decline when the GO amount was greater than 0.04%. The microstructure characterization indicated that GO can apparently densify the cement pastes with less
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.