Opium poppies are a major source of traditional drugs, which are not only harmful to physical and mental health, but also threaten the economy and society. Monitoring poppy cultivation in key regions through remote sensing is therefore a crucial task; the location coordinates of poppy parcels represent particularly important information for their eradication by local governments. We propose a new methodology based on deep learning target detection to identify the location of poppy parcels and map their spatial distribution. We first make six training datasets with different band combinations and slide window sizes using two ZiYuan3 (ZY3) remote sensing images and separately train the single shot multibox detector (SSD) model. Then, we choose the best model and test its performance using 225 km2 verification images from Lao People’s Democratic Republic (Lao PDR), which exhibits a precision of 95% for a recall of 85%. The speed of our method is 4.5 km2/s on 1080TI Graphics Processing Unit (GPU). This study is the first attempt to monitor opium poppies with the deep learning method and achieve a high recognition rate. Our method does not require manual feature extraction and provides an alternative way to rapidly obtain the exact location coordinates of opium poppy cultivation patches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.