Abstract(K,Na)NbO3 based ceramics are considered to be one of the most promising lead-free ferroelectrics replacing Pb(Zr,Ti)O3. Despite extensive studies over the last two decades, the mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics has not been fully understood. Here, we combine temperature-dependent synchrotron x-ray diffraction and property measurements, atomic-scale scanning transmission electron microscopy, and first-principle and phase-field calculations to establish the dopant–structure–property relationship for multi-elements doped (K,Na)NbO3 ceramics. Our results indicate that the dopants induced tetragonal phase and the accompanying high-density nanoscale heterostructures with low-angle polar vectors are responsible for the high dielectric and piezoelectric properties. This work explains the mechanism of the high piezoelectricity recently achieved in (K,Na)NbO3 ceramics and provides guidance for the design of high-performance ferroelectric ceramics, which is expected to benefit numerous functional materials.
Flexible pressure sensors have attracted a considerable amount of attention in various fields including robotics and healthcare applications, among others. However, it remains significantly challenging to design and fabricate a flexible capacitive pressure sensor with a quite broad linearity detection range due to the nonlinear stress–strain relation of the hyperelastic polymer-based dielectric material. Along these lines, in this work, a novel flexible capacitive pressure sensor with microstructured composite dielectric layer (MCDL) is demonstrated. The MCDL was prepared by enforcing a solvent-free planetary mixing and replica molding method, while the performances of the flexible capacitive pressure sensor were characterized by performing various experimental tests. More specifically, the proposed capacitive pressure sensor with 4.0 wt % cone-type MCDL could perceive external pressure loads with a broad detection range of 0–1.3 MPa, which yielded a high sensitivity value of 3.97 × 10−3 kPa−1 in a relative wide linear range of 0–600 kPa. Moreover, the developed pressure sensor exhibited excellent repeatability during the application of 1000 consecutive cycles and a fast response time of 150 ms. Finally, the developed sensor was utilized for wearable monitoring and spatial pressure distribution sensing applications, which indicates the great perspectives of our approach for potential use in the robotics and healthcare fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.