In recent years, segmentation details and computing efficiency have become more important in medical image segmentation for clinical applications. In deep learning, UNet based on a convolutional neural network is one of the most commonly used models. UNet 3+ was designed as a modified UNet by adopting the architecture of full-scale skip connections. However, full-scale feature fusion can result in excessively redundant computations. This study aimed to reduce the network parameters of UNet 3+ while further improving the feature extraction capability. First, to eliminate redundancy and improve computational efficiency, we prune the full-scale skip connections of UNet 3+. In addition, we use the attention module called Convolutional Block Attention Module (CBAM) to capture more essential features and thus improve the feature expression capabilities. The performance of the proposed model was validated by three different types of datasets: skin cancer segmentation, breast cancer segmentation, and lung segmentation. The parameters are reduced by about 36% and 18% compared to UNet and UNet 3+, respectively. The results show that the proposed method not only outperformed the comparison models in a variety of evaluation metrics but also achieved more accurate segmentation results. The proposed models have lower network parameters that enhance feature extraction and improve segmentation performance efficiently. Furthermore, the models have great potential for application in medical imaging computer-aided diagnosis.
To extract buildings accurately, we propose a foreground-aware refinement network for building extraction. In particular, in order to reduce the false positive of buildings, we design the foreground-aware module using the attention gate block, which effectively suppresses the features of nonbuilding and enhances the sensitivity of the model to buildings. In addition, we introduce the reverse attention mechanism in the detail refinement module. Specifically, this module guides the network to learn to supplement the missing details of the buildings by erasing the currently predicted regions of buildings and achieves more accurate and complete building extraction. To further optimize the network, we design hybrid loss, which combines BCE loss and SSIM loss, to supervise network learning from both pixel and structure layers. Experimental results demonstrate the superiority of our network over state-of-the-art methods in terms of both quantitative metrics and visual quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.