MiR-150, a major modulator negatively regulating the development and differentiation of various immune cells, is widely involved in orchestrating inflammation. In transplantation immunity, miR-150 can effectively induce immune tolerance, although the underlying mechanisms have not been fully elucidated. In the current study, we found that miR-150 is elevated after blocking CD28/B7 co-stimulatory signaling pathway and impaired IL-2 production by targeting ARRB2. Further investigation suggested that miR-150 not only repressed the level of ARRB2/PDE4 directly but also prevented AKT/ARRB2/PDE4 trimer recruitment into the lipid raft by inhibiting the activities of PI3K and AKT through the cAMP-PKA-Csk signaling pathway. This leads to the interruption of cAMP degradation and subsequently results in inhibition of the NF-kB pathway and reduced production of both IL-2 and TNF. In conclusion, our study demonstrated that miR-150 can effectively prevent CD28/B7 co-stimulatory signaling transduction, decrease production of inflammatory cytokines, such as IL-2 and TNF, and elicit the induction of immune tolerance. Therefore, miR-150 could become a novel potential therapeutic target in transplantation immunology.
Glioblastoma multiforme (GBM) is one of the most malignant human intracranial tumors. Temozolomide (TMZ) is the primary alkylating agent for GBM patients. However, many GBM patients are resistant to TMZ. Therefore, patients with GBM urgently need more effective therapeutic options. 20(S)‐ginsenoside‐Rg3 (20(S)‐Rg3) is a natural chemical with anti‐tumor effects, but at present there is little understanding of its functional mechanism. Several research reports have demonstrated that O6‐methylguanine DNA‐methyltransferase (MGMT) repairs damaged DNA and contributes to TMZ resistance in gliomas. In addition, recent studies have shown that MGMT gene expression could be regulated by the Wnt/β‐catenin pathway. However, whether 20(S)‐Rg3 inhibits MGMT expression and augments chemosensitivity to Temozolomide (TMZ) in glioma cells remains unclear. In this study, we explored the modulating effects of 20(S)‐Rg3 on MGMT. We used glioma cell lines, primary cell strain (including T98G, U118 and GBM‐XX; all of them are MGMT‐positive glioma cell lines) and xenograft glioma models to examine whether 20(S)‐Rg3 increased the sensitivity to TMZ and to reveal the underlying mechanisms. We found that the MGMT expression was effectively downregulated by 20(S)‐Rg3 via the Wnt/β‐catenin pathway in glioma cell lines, and TMZ resistance was significantly reversed by 20(S)‐Rg3. Meanwhile, 20(S)‐Rg3 shows no obvious cytotoxicity at its effective dose and is well tolerated in vivo. In addition, we found that 20(S)‐Rg3 significantly restrains the epithelial‐mesenchymal transition (EMT) progression of glioma cells. Taken together, these results indicate that 20(S)‐Rg3 may be a novel agent to use in treatment of GBM, especially in TMZ‐resistant GBM with high MGMT expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.