In this work, the epoxy resin cured with chlorinated fluorene amine as the curing agent was obtained, which significantly increased the resin modulus and did not reduce the impact toughness, compared with the common curing system. Al2O3 nanoparticles were used to stiffen the new curing epoxy system, which did not reduce the compression strength of the resin but increased the compression modulus. The microscopic morphology showed that the rigid particles were uniformly dispersed in the resin matrix, and the addition of rigid particles mildly affected the reactional and rheological properties of the resin system. The minimum viscosity of the matrix increased with the additional number of particles. The composite was prepared using the nanoparticle-modified epoxy resin with carbon fiber (CF), and the compression strength of the composite was significantly improved by nearly 30% compared with that composed of the common epoxy system.
In the face of the difficulty in achieving high-quality integrated molding of longitudinally and transversely stiffened panels for helicopters by resin-matrix composite materials, we combine the prepreg process and the resin transfer molding (RTM) process to propose a hybrid resin transfer molding (HRTM) for composite stiffened panel structures. The HRTM process uses a mixture of prepreg and dry fabric to lay up a hybrid fiber preform, and involves injecting liquid resin technology. Using this process, a longitudinally and transversely stiffened panel structure is prepared, and the failure modes under compressive load are explored. The results show that at the injection temperature of the RTM resin, the prepreg resin dissolves slightly and has little effect on the viscosity of the RTM resin. Both resins have good miscibility at the curing temperature, which allows for the overall curing of the resin. A removable box core mold for the HRTM molding is designed, which makes it convenient for the mold to be removed after molding and is suitable for the overall molding of the composite stiffened panel. Ultrasonic C-scan results show that the internal quality of the composite laminates prepared using the HRTM process is good. A compression test proves that the composite stiffened panel undergoes sequential buckling deformation in different areas under compressive load, followed by localized debonding and delamination of the skin, and finally failure due to the fracture of the longitudinal reinforcement ribs on both sides. The compressive performance of the test specimen is in good agreement with the finite element simulation results. The verification results show that the HRTM process can achieve high-quality integrated molding of the composite longitudinally and transversely stiffened panel structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.