Implantable sensors offer a great opportunity to extract physiological information from inside the body by real-time monitoring. With the demand for personal healthcare and point-of-care treatment, a long-term stable sensor of excellent mechanical and biological compatibility with human organs is urgently required. In contrast to rigid electronic devices using silicon or metallic materials, soft sensors are realized by flexible polymers in a simple way, endowing the implantable sensor with a tissue-mimetic structure. In this article, we systematically review the development of implantable electronic sensors based on polymer materials. The unique properties of polymers are introduced, followed by their applications in implantable device fabrication.Strategies to integrate polymers with implantable sensors, encompassing device interface, geometry, and integration, are also summarized. Furthermore, biosensing applications of polymer-based implantable devices are described, ranging from physical stimulus monitoring to biochemical analysis in vivo. Finally, we envision how advances in polymer materials may facilitate the development of intelligent sensors with broader applications in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.