How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue. In this paper, four different causal constraints algorithms are added into score calculations to prune possible parent sets, improving state-ofthe-art learning algorithms' efficiency. Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy. Under causal constraints, these exact learning algorithms can prune about 70% possible parent sets and reduce about 60% running time while only losing no more than 2% accuracy on average. Additionally, with sufficient samples, exact learning algorithms with causal constraints can also obtain the optimal network. In general, adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.